Improving the degree-day method for sub-daily melt simulations with physically-based diurnal variations

Cara Tobin, Bettina Schaefli, Ludovico Nicótina, Silvia Simoni, Guillermo Barrenetxea, Russell Smith, Marc Parlange, Andrea Rinaldo

Research output: Contribution to journalArticleResearchpeer-review

31 Citations (Scopus)


This paper proposes a new extension of the classical degree-day snowmelt model applicable to hourly simulations for regions with limited data and adaptable to a broad range of spatially-explicit hydrological models. The snowmelt schemes have been tested with a point measurement dataset at the Cotton Creek Experimental Watershed (CCEW) in British Columbia, Canada and with a detailed dataset available from the Dranse de Ferret catchment, an extensively monitored catchment in the Swiss Alps. The snowmelt model performance is quantified with the use of a spatially-explicit model of the hydrologic response. Comparative analyses are presented with the widely-known, grid-based method proposed by Hock which combines a local, temperature-index approach with potential radiation. The results suggest that a simple diurnal cycle of the degree-day melt parameter based on minimum and maximum temperatures is competitive with the Hock approach for sub-daily melt simulations. Advantages of the new extension of the classical degree-day method over other temperature-index methods include its use of physically-based, diurnal variations and its ability to be adapted to data-constrained hydrological models which are lumped in some nature.

Original languageEnglish
Pages (from-to)149-164
Number of pages16
JournalAdvances in Water Resources
Publication statusPublished - May 2013
Externally publishedYes


  • Snowmelt comparison
  • Spatially-explicit hydrological modeling
  • Temperature index methods
  • Wireless meteorological network

Cite this