TY - JOUR
T1 - Improving physical movement during stroke rehabilitation
T2 - investigating associations between sleep measured by wearable actigraphy technology, fatigue, and key biomarkers
AU - Smith, Madeleine J.
AU - Pellegrini, Michael
AU - Major, Brendan
AU - Graco, Marnie
AU - Porter, Stephanie
AU - Kramer, Sharon
AU - Sewell, Katherine
AU - Salberg, Sabrina
AU - Chen, Zhibin
AU - Mychasiuk, Richelle
AU - Lannin, Natasha A.
N1 - Funding Information:
This research did not receive any specific grants from funding agencies. The following researchers were supported by fellowship funding: ZC [NHMRC, GNT1156444], RM [National Health and Medical Research Council, GNT117365], NL [Heart Foundation of Australia, GNT 106762].
Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Background: Sleep disturbance and fatigue are common in individuals undergoing inpatient rehabilitation following stroke. Understanding the relationships between sleep, fatigue, motor performance, and key biomarkers of inflammation and neuroplasticity could provide valuable insight into stroke recovery, possibly leading to personalized rehabilitation strategies. This study aimed to investigate the influence of sleep quality on motor function following stroke utilizing wearable technology to obtain objective sleep measurements. Additionally, we aimed to determine if there were relationships between sleep, fatigue, and motor function. Lastly, the study aimed to determine if salivary biomarkers of stress, inflammation, and neuroplasticity were associated with motor function or fatigue post-stroke. Methods: Eighteen individuals who experienced a stroke and were undergoing inpatient rehabilitation participated in a cross-sectional observational study. Following consent, participants completed questionnaires to assess sleep patterns, fatigue, and quality of life. Objective sleep was measured throughout one night using the wearable Philips Actiwatch. Upper limb motor performance was assessed on the following day and saliva was collected for biomarker analysis. Correlation analyses were performed to assess the relationships between variables. Results: Participants reported poor sleep quality, frequent awakenings, and difficulties falling asleep following stroke. We identified a significant negative relationship between fatigue severity and both sleep quality (r=-0.539, p = 0.021) and participants experience of awakening from sleep (r=-0.656, p = 0.003). A significant positive relationship was found between grip strength on the non-hemiplegic limb and salivary gene expression of Brain-derived Neurotrophic Factor (r = 0.606, p = 0.028), as well as a significant negative relationship between grip strength on the hemiplegic side and salivary gene expression of C-reactive Protein (r=-0.556, p = 0.048). Conclusion: The findings of this study emphasize the importance of considering sleep quality, fatigue, and biomarkers in stroke rehabilitation to optimize recovery and that interventions may need to be tailored to the individual. Future longitudinal studies are required to explore these relationships over time. Integrating wearable technology for sleep and biomarker analysis can enhance monitoring and prediction of outcomes following stroke, ultimately improving rehabilitation strategies and patient outcomes.
AB - Background: Sleep disturbance and fatigue are common in individuals undergoing inpatient rehabilitation following stroke. Understanding the relationships between sleep, fatigue, motor performance, and key biomarkers of inflammation and neuroplasticity could provide valuable insight into stroke recovery, possibly leading to personalized rehabilitation strategies. This study aimed to investigate the influence of sleep quality on motor function following stroke utilizing wearable technology to obtain objective sleep measurements. Additionally, we aimed to determine if there were relationships between sleep, fatigue, and motor function. Lastly, the study aimed to determine if salivary biomarkers of stress, inflammation, and neuroplasticity were associated with motor function or fatigue post-stroke. Methods: Eighteen individuals who experienced a stroke and were undergoing inpatient rehabilitation participated in a cross-sectional observational study. Following consent, participants completed questionnaires to assess sleep patterns, fatigue, and quality of life. Objective sleep was measured throughout one night using the wearable Philips Actiwatch. Upper limb motor performance was assessed on the following day and saliva was collected for biomarker analysis. Correlation analyses were performed to assess the relationships between variables. Results: Participants reported poor sleep quality, frequent awakenings, and difficulties falling asleep following stroke. We identified a significant negative relationship between fatigue severity and both sleep quality (r=-0.539, p = 0.021) and participants experience of awakening from sleep (r=-0.656, p = 0.003). A significant positive relationship was found between grip strength on the non-hemiplegic limb and salivary gene expression of Brain-derived Neurotrophic Factor (r = 0.606, p = 0.028), as well as a significant negative relationship between grip strength on the hemiplegic side and salivary gene expression of C-reactive Protein (r=-0.556, p = 0.048). Conclusion: The findings of this study emphasize the importance of considering sleep quality, fatigue, and biomarkers in stroke rehabilitation to optimize recovery and that interventions may need to be tailored to the individual. Future longitudinal studies are required to explore these relationships over time. Integrating wearable technology for sleep and biomarker analysis can enhance monitoring and prediction of outcomes following stroke, ultimately improving rehabilitation strategies and patient outcomes.
KW - Actigraphy
KW - Biomarkers
KW - Fatigue
KW - Inflammation
KW - Rehabilitation
KW - Sleep
KW - Stroke Rehabilitation
UR - http://www.scopus.com/inward/record.url?scp=85194523117&partnerID=8YFLogxK
U2 - 10.1186/s12984-024-01380-3
DO - 10.1186/s12984-024-01380-3
M3 - Article
C2 - 38802847
AN - SCOPUS:85194523117
SN - 1743-0003
VL - 21
JO - Journal of NeuroEngineering and Rehabilitation
JF - Journal of NeuroEngineering and Rehabilitation
IS - 1
M1 - 84
ER -