Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives

Zhifang Wu, Sonia R. Raga, Emilio J. Juarez-Perez, Xuyang Yao, Yan Jiang, Luis K. Ono, Zhijun Ning, He Tian, Yabing Qi

Research output: Contribution to journalArticleResearchpeer-review

76 Citations (Scopus)

Abstract

Because of the rapid rise of the efficiency, perovskite solar cells are currently considered as the most promising next-generation photovoltaic technology. Much effort has been made to improve the efficiency and stability of perovskite solar cells. Here, it is demonstrated that the addition of a novel organic cation of 2-(6-bromo-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethan-1-ammonium iodide (2-NAM), which has strong Lewis acid and base interaction (between CO and Pb) with perovskite, can effectively increase crystalline grain size and reduce charge carrier recombination of the double cation FA 0.83 MA 0.17 PbI 2.51 Br 0.49 perovskite film, thus boosting the efficiency from 17.1 ± 0.8% to 18.6 ± 0.9% for the 0.1 cm 2 cell and from 15.5 ± 0.5% to 16.5 ± 0.6% for the 1.0 cm 2 cell. The champion cell shows efficiencies of 20.0% and 17.6% with active areas of 0.1 and 1.0 cm 2 , respectively. Moreover, the hysteresis behavior is suppressed and the stability is improved. The result provides a promising route to further elevate efficiency and stability of perovskite solar cells by the fine tuning of triple organic cations.

Original languageEnglish
Article number1703670
Number of pages7
JournalAdvanced Materials
Volume30
Issue number3
DOIs
Publication statusPublished - 1 Jan 2018
Externally publishedYes

Keywords

  • hysteresis-free solar cells
  • large-area solar cells
  • moisture stability
  • perovskite solar cells
  • triple cations

Cite this