TY - JOUR
T1 - Improved chemical synthesis and demonstration of the relaxin receptor binding affinity and biological activity of mouse relaxin
AU - Samuel, Chrishan
AU - Lin, Feng
AU - Hossain, Mohammed
AU - Zhao, Chongxin
AU - Ferraro, Tania
AU - Bathgate, Ross
AU - Tregear, Geoffrey
AU - Wade, Johh
PY - 2007
Y1 - 2007
N2 - The primary stored and circulating form of relaxin in humans, human gene-2 (H2) relaxin, has potent antifibrotic properties with rapidly occurring efficacy. However, when administered to experimental models of fibrosis, H2 relaxin can only be applied over short-term (2-4 week) periods, due to rodents mounting an antibody response to the exogenous human relaxin, resulting in delayed clearance and, hence, increased and variable circulating levels. To overcome this problem, the current study investigated the therapeutic potential of mouse relaxin over long-term exposure in vivo. Mouse relaxin is unique among the known relaxins in that it possesses an extra residue within the C-terminal region of its A-chain. To enable a detailed assessment of its receptor interaction and biological properties, it was chemically synthesized in good overall yield by the separate preparation of each of its A- and B-chains followed by regioselective formation of each of the intramolecular and two intermolecular disulfide bonds. Murine relaxin was shown to bind with high affinity to the human, mouse, and rat RXFP1 (primary relaxin) receptor but with a slightly lower affinity to that of H2 relaxin. When administered to relaxin-deficient mice (which undergo an age-dependent progression of organ fibrosis) over a 4 month treatment period, mouse relaxin was able to significantly inhibit the progression of collagen accumulation in several organs including the lung, kidney, testis, and skin (all p <0.05 vs untreated group), consistent with the actions of H2 relaxin. These combined data demonstrate that mouse relaxin can effectively inhibit collagen deposition and accumulation (fibrosis) over long-term treatment periods.
AB - The primary stored and circulating form of relaxin in humans, human gene-2 (H2) relaxin, has potent antifibrotic properties with rapidly occurring efficacy. However, when administered to experimental models of fibrosis, H2 relaxin can only be applied over short-term (2-4 week) periods, due to rodents mounting an antibody response to the exogenous human relaxin, resulting in delayed clearance and, hence, increased and variable circulating levels. To overcome this problem, the current study investigated the therapeutic potential of mouse relaxin over long-term exposure in vivo. Mouse relaxin is unique among the known relaxins in that it possesses an extra residue within the C-terminal region of its A-chain. To enable a detailed assessment of its receptor interaction and biological properties, it was chemically synthesized in good overall yield by the separate preparation of each of its A- and B-chains followed by regioselective formation of each of the intramolecular and two intermolecular disulfide bonds. Murine relaxin was shown to bind with high affinity to the human, mouse, and rat RXFP1 (primary relaxin) receptor but with a slightly lower affinity to that of H2 relaxin. When administered to relaxin-deficient mice (which undergo an age-dependent progression of organ fibrosis) over a 4 month treatment period, mouse relaxin was able to significantly inhibit the progression of collagen accumulation in several organs including the lung, kidney, testis, and skin (all p <0.05 vs untreated group), consistent with the actions of H2 relaxin. These combined data demonstrate that mouse relaxin can effectively inhibit collagen deposition and accumulation (fibrosis) over long-term treatment periods.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17425335
U2 - 10.1021/bi700238h
DO - 10.1021/bi700238h
M3 - Article
VL - 46
SP - 5374
EP - 5381
JO - Biochemistry
JF - Biochemistry
SN - 0006-2960
IS - 18
ER -