TY - JOUR
T1 - Impact of sea-salt on morpho-physiological and biochemical responses in banana (Musa acuminata cv. Berangan)
AU - Mazumdar, Purabi
AU - Lau, Su Ee
AU - Singh, Pooja
AU - Takhtgahi, Hossein Mirzaei
AU - Harikrishna, Jennifer Ann
N1 - Funding Information:
Acknowledgments This work was supported by the University of Malaya Research Grant Programme (UMRG: RP005B-13BIO), and CEBAR Research University Grants (RU006-2017 and RU015-2016).
Publisher Copyright:
© 2019, Prof. H.S. Srivastava Foundation for Science and Society.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/5
Y1 - 2019/5
N2 - Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m−1), severe (28.5 dS m−1) or moderate (10.2 dS m−1) salinity levels had reduced root length (2.0–6.0-fold), plant height (1.2–1.6-fold), leaf number (2.0–2.3-fold) and leaf area (3.3–4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3–12.3-fold, chlorophyll a: 1.3–9.2-fold; chlorophyll b: 1.3–6.9-fold lower and carotenoids: 1.4–3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3–3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
AB - Banana is often grown in coastal-regions, and while known for its sensitivity towards seawater, little is documented on the effect of sea-salt on the growth, physiology and metal homeostasis. Here we report that banana plantlets exposed to sea-salt at extreme (average seawater concentration; 52.7 dS m−1), severe (28.5 dS m−1) or moderate (10.2 dS m−1) salinity levels had reduced root length (2.0–6.0-fold), plant height (1.2–1.6-fold), leaf number (2.0–2.3-fold) and leaf area (3.3–4.0-fold) compared to control plantlets. Degradation of pigments (total chlorophyll: 1.3–12.3-fold, chlorophyll a: 1.3–9.2-fold; chlorophyll b: 1.3–6.9-fold lower and carotenoids: 1.4–3.7-fold lower) reflected vulnerability of photosystems to salt stress. Relative water content showed a maximum decrease of 1.5-fold in salt stress. MDA analysis showed sea-salt exposure triggers 2.3–3.5-fold higher lipid peroxidation. Metal content analysis showed a 73-fold higher Na value from roots exposed to extreme salinity compared to control plantlets. While phenotype was clearly affected, moderate salinity showed no significant alteration of macro (N, P, K and Ca) and micro (Fe, Mn and Cu) metal content. The antioxidant enzymes: SOD (3.2-fold), CAT (1.7-fold) and GR (6-fold) showed higher activity at moderate salinity level compared to control plantlets but lower activity at severe (SOD: 1.3-fold; CAT: 1.5-fold; GR: 2-fold lower) and extreme seawater salinity (SOD: 1.5; CAT: 1.9; GR: 1.3-fold lower). Mild changes in growth and physiology at sea-salt levels equivalent to moderate seawater flooding, indicate that banana will survive such flooding, while extreme seawater inundation will be lethal. This data provides a reference for future salinity-mediated work in banana.
KW - Antioxidant enzymes
KW - Banana
KW - Lipid peroxidation
KW - Metal composition
KW - Sea-salt
KW - Seawater flooding
UR - http://www.scopus.com/inward/record.url?scp=85065179620&partnerID=8YFLogxK
U2 - 10.1007/s12298-019-00659-3
DO - 10.1007/s12298-019-00659-3
M3 - Article
C2 - 31168234
AN - SCOPUS:85065179620
SN - 0971-5894
VL - 25
SP - 713
EP - 726
JO - Physiology and Molecular Biology of Plants
JF - Physiology and Molecular Biology of Plants
IS - 3
ER -