Impact of input data uncertainties on urban stormwater model parameters.

M. Kleidorfer, A. Deletic, T. D. Fletcher, Wolfgang Rauch

Research output: Contribution to journalArticleResearchpeer-review

48 Citations (Scopus)

Abstract

The use of urban drainage models requires careful calibration, where model parameters are selected in order to minimize the difference between measured and simulated results. It has been recognized that often more than one set of calibration parameters can achieve similar model accuracy. A probability distribution of model parameters should therefore be constructed to examine the model's sensitivity to its parameters. With increasing complexity of models, it also becomes important to analyze the model parameter sensitivity while taking into account uncertainties in input and calibration data. In this study a Bayesian approach was used to develop a framework for quantification of impacts of uncertainties in the model inputs on the parameters of a simple integrated stormwater model for calculating runoff, total suspended solids and total nitrogen loads. The framework was applied to two catchments in Australia. It was found that only systematic rainfall errors have a significant impact on flow model parameters. The most sensitive flow parameter was the effective impervious area, which can be calibrated to completely compensate for the input data uncertainties. The pollution model parameters were influenced by both systematic and random rainfall errors. Additionally an impact of circumstances (e.g. catchment type, data availability) has been recognized.

Original languageEnglish
Pages (from-to)1545-1554
Number of pages10
JournalWater Science and Technology
Volume60
Issue number6
Publication statusPublished - 2009

Cite this