Impact of exercise duration on gastrointestinal function and symptoms

Stephanie K. Gaskell, Rebecca Burgell, Lukasz Wiklendt, Phil G. Dinning, Ricardo J.S. Costa

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)

Abstract

The study aimed to determine the impact of exercise duration on gastrointestinal functional responses and gastrointestinal symptoms (GISs) in response to differing exercise durations. Endurance runners (n = 16) completed three trials on separate occasions, randomized to 1 h (1-H), 2 h (2-H), and 3 h (3-H) of running at 60% V̇o2max in temperate ambient temperature. Orocecal transit time (OCTT) was determined by lactulose challenge, with concomitant breath hydrogen (H2) determination. Gastric slow wave activity was recorded using cutaneous electrogastrography (cEGG) before and after exertion. GIS was determined using a modified visual analog scale (mVAS). OCTT response was classified as very slow on all trials (∼93-101 min) with no trial difference observed (P = 0.895). Bradygastria increased postexercise on all trials (means ± SD: 1-H: 10.9 ± 11.7%, 2-H: 6.2 ± 9.8%, and 3-H: 13.2 ± 21.4%; P < 0.05). A reduction in the normal gastric slow wave activity (2-4 cycles/min) was observed postexercise on 1-H only (-10.8 ± 17.6%; P = 0.039). GIS incidence and gut discomfort was higher on 2-H (81% and 12 counts) and 3-H (81% and 18 counts), compared with 1-H (69% and 6 counts) (P = 0.038 and P = 0.006, respectively). Severity of gut discomfort, total-GIS, upper-GIS, and lower-GIS increased during exercise on all trials (P < 0.05). Steady-state exercise in temperate ambient conditions for 1 h, 2 h, and 3 h instigates perturbations in gastric slow wave activity compared with rest and hampers OCTT, potentially explaining the incidence and severity on exercise-associated GIS.NEW & NOTEWORTHY Exercise stress per se appears to instigate perturbations to gastric myoelectrical activity, resulting in an increase in bradygastria frequency, inferring a reduction in gastric motility. The perturbations to gastrointestinal functional responses instigated by exercise per se, likely contribute to the high incidence and severity level of exercise-associated gastrointestinal symptoms. Cutaneous electrogastrography is not commonly used in exercise gastroenterology research, however, may be a useful aid in providing an overall depiction of gastrointestinal function. Particularly relating to gastrointestinal motility and concerning gastroparesis.

Original languageEnglish
Pages (from-to)160-171
Number of pages12
JournalJournal of Applied Physiology
Volume134
Issue number1
DOIs
Publication statusPublished - 1 Jan 2023

Keywords

  • electrogastrography
  • endurance
  • gastrointestinal motility
  • gastrointestinal symptoms
  • orocecal transit

Cite this