Immune response to rb1-Regulated senescence limits radiation-Induced osteosarcoma formation

Maya Kansara, Huei San Leong, Dan Mei Lin, Sophie Popkiss, Puiyi Pang, Dale W. Garsed, Carl R. Walkley, Carleen Cullinane, Jason Ellul, Nicole M. Haynes, Rod Hicks, Marieke L. Kuijjer, Anne Marie Cleton-Jansen, Philip W. Hinds, Mark J. Smyth, David M. Thomas

Research output: Contribution to journalArticleResearchpeer-review

56 Citations (Scopus)


Ionizing radiation (IR) and germline mutations in the retinoblastoma tumor suppressor gene (RB1) are the strongest risk factors for developing osteosarcoma. Recapitulating the human predisposition, we found that Rb1 +/- mice exhibited accelerated development of IR-induced osteosarcoma, with a latency of 39 weeks. Initial exposure of osteoblasts to carcinogenic doses of IR in vitro and in vivo induced RB1-dependent senescence and the expression of a panel of proteins known as senescence-associated secretory phenotype (SASP), dominated by IL-6. RB1 expressionclosely correlated with that of the SASP cassette in human osteosarcomas, and low expression of both RB1 and the SASP genes was associated with poor prognosis. In vivo, IL-6 was required for IR-induced senescence, which elicited NKT cell infiltration and a host inflammatory response. Mice lacking IL-6 or NKT cells had accelerated development of IR-induced osteosarcomas. These data elucidate an important link between senescence, which is acell-autonomous tumor suppressor response, and the activation of host-dependent cancer immunosurveillance. Our findings indicate that overcoming the immune response to senescence is a rate-limiting step in the formation of IR-induced osteosarcoma.

Original languageEnglish
Pages (from-to)5351-5360
Number of pages10
JournalJournal of Clinical Investigation
Issue number12
Publication statusPublished - 2 Dec 2013
Externally publishedYes

Cite this