TY - JOUR
T1 - Immune Complexes Mediate Rapid Alterations in Microvascular Permeability: Roles for Neutrophils, Complement, and Platelets
AU - Lister, Karyn J
AU - James, William Geraint Moulton
AU - Hickey, Michael John
PY - 2007
Y1 - 2007
N2 - OBJECTIVE: Immune complex-induced responses involve multiple cellular and molecular mechanisms. However, how these pathways interact in the initiation of immune complex-induced response is poorly understood. Therefore the aim of this study was to investigate the immediate response of the microvasculature to immune complex formation. METHODS: The reverse passive Arthus (RPA) model was applied to the mouse cremaster muscle. Intravital microscopy was used to examine alterations in florescein isothiocyanate (FITC)-dextran leakage from microvessels, and endothelial interactions of leukocytes and platelets in postcapillary venules. RESULTS: Immune complex deposition induced rapid increases in microvascular permeability and leukocyte adhesion and emigration. Inhibition of platelet-activating factor (PAF) and leukotrienes inhibited the increase in permeability. Depletion of C3 reduced immune complex-mediated leukocyte recruitment and permeability, and a similar effect on permeability was observed following inhibition of leukocyte adhesion. Mast cell stabilization reduced increases in leukocyte adhesion and emigration but accelerated the increase in microvascular permeability. Platelet-endothelial interactions also increased during the RPA response, and platelet depletion delayed the changes in permeability and inhibited leukocyte recruitment. CONCLUSIONS: This study demonstrates that immune complexes induce a rapid induction of complement-dependent leukocyte recruitment, and neutrophil-dependent microvascular dysfunction. Furthermore, this study identifies a role for platelets in promoting immune complex-induced leukocyte recruitment.
AB - OBJECTIVE: Immune complex-induced responses involve multiple cellular and molecular mechanisms. However, how these pathways interact in the initiation of immune complex-induced response is poorly understood. Therefore the aim of this study was to investigate the immediate response of the microvasculature to immune complex formation. METHODS: The reverse passive Arthus (RPA) model was applied to the mouse cremaster muscle. Intravital microscopy was used to examine alterations in florescein isothiocyanate (FITC)-dextran leakage from microvessels, and endothelial interactions of leukocytes and platelets in postcapillary venules. RESULTS: Immune complex deposition induced rapid increases in microvascular permeability and leukocyte adhesion and emigration. Inhibition of platelet-activating factor (PAF) and leukotrienes inhibited the increase in permeability. Depletion of C3 reduced immune complex-mediated leukocyte recruitment and permeability, and a similar effect on permeability was observed following inhibition of leukocyte adhesion. Mast cell stabilization reduced increases in leukocyte adhesion and emigration but accelerated the increase in microvascular permeability. Platelet-endothelial interactions also increased during the RPA response, and platelet depletion delayed the changes in permeability and inhibited leukocyte recruitment. CONCLUSIONS: This study demonstrates that immune complexes induce a rapid induction of complement-dependent leukocyte recruitment, and neutrophil-dependent microvascular dysfunction. Furthermore, this study identifies a role for platelets in promoting immune complex-induced leukocyte recruitment.
UR - http://www.informaworld.com/smpp/content?content=10.1080/10739680701404879
M3 - Article
SN - 1073-9688
VL - 14
SP - 709
EP - 722
JO - Microcirculation
JF - Microcirculation
IS - 7
ER -