IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice

Ellen Menkhorst, Lois Salamonsen, Lorraine Robb, Evdokia Dimitriadis

Research output: Contribution to journalArticleResearchpeer-review

50 Citations (Scopus)


Hormonal contraceptives are unsuitable for many women; thus, the development of new, nonhormonal contraceptives is of great interest. In women, uterine epithelial expression of interleukin 11 (IL11) and its receptor (IL11RA) suggests IL11 is critical for blastocyst attachment during implantation. Il11radeficient mice are infertile due to a defective decidualization response to the blastocyst, leading to total pregnancy loss. We examined the effect of administering a PEGylated IL11 antagonist, PEGIL11A (where PEG is polyethylene glycol), on pregnancy outcomes in mice and IL11 signaling in human endometrial epithelial cells (HES). PEGIL11A was detected in sera up to 72 h after intraperitoneal (IP) injection versus up to 2 h for the non-PEGylated antagonist. Following IP injection, PEGIL11A localized to uterine decidual cells and reduced immunoreactive cyclin D3 (IL11 decidual target). To inhibit IL11 action during early decidualization, PEGIL11A or control were administered IP on Days 3-6 (beginning just prior to maximal decidual Il11 expression). On Day 6, mesometrial decidualization was disturbed in PEGIL11A-treated animals with regions of hemorrhage visible in the mesometrial decidua. On Day 10, severe decidual destruction was visible: implantation sites contained significant hemorrhage, and the uterine luminal epithelium had reformed, suggesting a return to estrous cycling. These results demonstrate that PEGIL11A blocked IL11 action in the decidua during early decidualization, which totally abolished pregnancy and which is equivalent to the Il11ra-/- mouse. PEGIL11A significantly diminished STAT3 phosphorylation in HES cells in vitro (P ≤ 0.05). This study provides valuable information for PEGIL11A that could lead to the development of this protein as a nonhormonal contraceptive.

Original languageEnglish
Pages (from-to)920-927
Number of pages8
JournalBiology of Reproduction
Issue number5
Publication statusPublished - May 2009


  • Contraception
  • Cytokines
  • Decidua
  • Interleukin 11
  • Uterus

Cite this