In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

S. Jahangir, Xuan Cheng, H. H. Huang, J. Ihlefeld, V. Nagarajan

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO2/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

Original languageEnglish
Article number163511
Number of pages8
JournalJournal of Applied Physics
Volume116
Issue number16
DOIs
Publication statusPublished - 27 Oct 2014
Externally publishedYes

Cite this