Identification of putative targets of DNA (cytosine-5) methylationmediated transcriptional silencing using a novel conditionally active form of DNA methyltransferase 3a

Michael S. Samuel, Therese Lundgren-May, Matthias Ernst

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)


Aberrant DNA methylation of gene promoters is a recurrent finding associated with diseases such as cancer and inflammation, and is thought to contribute to disease through its role in transcriptional repression. Indeed, recent evidence suggests that DNA (cytosine-5) methyltransferases (DNMTs) may mediate the activity of factors promoting cell growth. Here, we utilise a novel experimental system for the conditional and reversible activation of a de novo DNMT by constructing a steroid-hormone analogue activated version, Dnmt3a-mER™. Following treatment with the oestrogen analogue 4-hydroxy tamoxifen of murine embryonic stem cells expressing this protein, we have identified by microarray analysis, several potential targets of Dnmt3a mediated transcriptional repression including the cancer associated genes Ssx2ip, Hmga1 and Wrnip. These results were validated using quantitative reverse transcriptase PCR and we confirm the biological significance of these in vitro observations by demonstrating a reduction in mRNA transcripts of the same genes within the intestinal epithelium of cancer-prone transgenic knock-in mutant mice over-expressing Dnmt3a throughout the intestinal epithelium.

Original languageEnglish
Pages (from-to)426-436
Number of pages11
JournalGrowth Factors
Issue number6
Publication statusPublished - 1 Dec 2007
Externally publishedYes


  • Fusion
  • Oestrogen
  • Protein
  • Receptor

Cite this