TY - JOUR
T1 - Campylobacter in an urban estuary
T2 - public health insights from occurrence, hela cytotoxicity, and Caco-2 attachment cum invasion
AU - Siddiqee, Mahbubul H.
AU - Henry, Rebekah
AU - Coleman, Rhys A.
AU - Deletic, Ana
AU - McCarthy, David T.
PY - 2019
Y1 - 2019
N2 - Aquatic recreation in urban estuaries worldwide is often restricted by fecal pollution. Variability in the occurrence of fecal pathogens and their differential virulence potentials within these estuaries may result in variable public health risks. To address this hypothesis, Campylobacter were isolated from the Yarra River estuary, Australia and then characterized via HeLa cell cytotoxicity and attachment to and the invasion of Caco-2 monolayers. Overall, 54% (n=216) of estuarine samples (water and sediment combined) yielded biochemically confirmed culturable Campylobacter; higher detection was recorded in water (92%, n=90) than in the bank and bed sediments combined (27%, n=126). The seasonality of occurrence was not significant. HeLa cell cytotoxicity revealed that estuarine Campylobacter had low cytotoxin titers; the 95% confidence interval (CI) ranged between 61 and 85, which was markedly lower than the mean value (~386) for the C. jejuni 11168 reference pathogenic strain. The Caco-2 attachment of estuarine Campylobacter isolates (n=189) revealed that the 95%CI for the attachment efficiency of the test strains ranged between 0.09 and 0.1%, with only 3.7% having a higher efficiency than the 5th percentile value for C. jejuni 11168. None of the estuarine strains exhibited Caco-2 invasion capabilities. In contrast to the common assumption during quantitative microbial/risk assessments (QMRAs) that all environmental strains are pathogenic, the present results revealed that Campylobacter within the Yarra River estuary had very low virulence potential. Since this is the first study to use human epithelial cell lines to characterize estuary-borne pathogens, these results generate valuable insights for a better understanding of the public health risks in urban estuaries that will underpin more robust QMRAs.
AB - Aquatic recreation in urban estuaries worldwide is often restricted by fecal pollution. Variability in the occurrence of fecal pathogens and their differential virulence potentials within these estuaries may result in variable public health risks. To address this hypothesis, Campylobacter were isolated from the Yarra River estuary, Australia and then characterized via HeLa cell cytotoxicity and attachment to and the invasion of Caco-2 monolayers. Overall, 54% (n=216) of estuarine samples (water and sediment combined) yielded biochemically confirmed culturable Campylobacter; higher detection was recorded in water (92%, n=90) than in the bank and bed sediments combined (27%, n=126). The seasonality of occurrence was not significant. HeLa cell cytotoxicity revealed that estuarine Campylobacter had low cytotoxin titers; the 95% confidence interval (CI) ranged between 61 and 85, which was markedly lower than the mean value (~386) for the C. jejuni 11168 reference pathogenic strain. The Caco-2 attachment of estuarine Campylobacter isolates (n=189) revealed that the 95%CI for the attachment efficiency of the test strains ranged between 0.09 and 0.1%, with only 3.7% having a higher efficiency than the 5th percentile value for C. jejuni 11168. None of the estuarine strains exhibited Caco-2 invasion capabilities. In contrast to the common assumption during quantitative microbial/risk assessments (QMRAs) that all environmental strains are pathogenic, the present results revealed that Campylobacter within the Yarra River estuary had very low virulence potential. Since this is the first study to use human epithelial cell lines to characterize estuary-borne pathogens, these results generate valuable insights for a better understanding of the public health risks in urban estuaries that will underpin more robust QMRAs.
KW - Campylobacter detection
KW - Fecal contamination
KW - Fecal pathogens
KW - Gentamicin protection assay
KW - Recreational water
UR - http://www.scopus.com/inward/record.url?scp=85077482559&partnerID=8YFLogxK
U2 - 10.1264/jsme2.ME19088
DO - 10.1264/jsme2.ME19088
M3 - Article
C2 - 31735766
AN - SCOPUS:85077482559
SN - 1342-6311
VL - 34
SP - 436
EP - 445
JO - Microbes and Environments
JF - Microbes and Environments
IS - 4
ER -