Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids

Haiqing Li, Justin J. Cooper-White

Research output: Contribution to journalArticleResearchpeer-review

31 Citations (Scopus)


1-Pyrenemethanol initiated hyperbranched polyglycerol (PiHP) has been synthesized and utilized to non-covalently functionalize pristine multi-walled carbon nanotubes (CNTs) through p-p stacking interactions. Mediated with the PiHP coating, a variety of metal nanoparticles (Au, Ag, Pd and Pt) were in situ generated and randomly tethered on the CNT sidewalls, producing various water-soluble CNT/PiHP/metal hybrids. Particularly, the resulting CNT/PiHP/Pt hybrids possess improved metal coverage in comparison to the reported CNT/Pt nanohybrids obtained by the use of conventional non-covalent CNT surface-modifiers. Depending on the using concentration of Pt2+ precursor, Pt coverage in CNT/PiHP/Pt hybrids can be effectively controlled. In the meanwhile, Pt component on the CNT sidewalls can be either well isolated nanoparticles or loose "nanoclusters". To test the promising catalytic application of these obtained CNT/PiHP/Pt hybrids, a systematic investigation on their catalytic performance towards the reduction of 4-nitrophenol to produce 4-aminophenol was performed. Surprisingly, these hybrids exhibited significantly enhanced catalytic activity compared with the conventionally utilized Au and Ag nanoparticles. Moreover, they can be easily recovered and reused without significant loss in catalytic activity after running 6 circles.

Original languageEnglish
Pages (from-to)2915-2920
Number of pages6
Issue number7
Publication statusPublished - 2013
Externally publishedYes

Cite this