Hybrid refractive-diffractive microlenses in glass by focused Xe ion beam

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The combination of refractive and diffractive components in a single optical element provides miniaturization of optical systems and enhancement of their performance. Thus, hybrid singlet lenses with diffractive structures added on top of the refractive curved surface were shown to have reduced chromatic and spherical aberration. Optical systems based on such hybrid lenses have reduced dimensions as they require fewer lenses for aberrations-correction. Diffractive elements provide additional possibilities of light manipulation and enable the realization of miniaturized multifocal systems, spectrometers, and other devices. Glass hybrid lenses are typically realized by diamond turning or glass moulding. These techniques, however, are not applicable for the fabrication of lenses in brittle materials or microlenses (hundreds of micrometers in diameter or less). On the other hand, direct writing techniques, such as focused ion beam (FIB) milling (typically Ga), offer a high resolution and flexibility of patterning on curved lens surfaces made of a great variety of materials. The disadvantages of FIB milling are its slow speed and Ga implantation that may alter or degrade the optical performance of fabricated components. FIB systems based on high brightness plasma ion sources provide more than an order of magnitude increase in milling rates with noble gas ions (e.g., Xe) compared with Ga FIBs. Here, the authors demonstrate the feasibility of rapid, direct milling of hybrid refractive-diffractive microlenses in glass using >60 nA of Xe ion current. Microlenses with up to 300-μm diameter were milled and diffraction gratings were realized on top of their curved surfaces. The performance of the lenses was characterized by mapping the transmitted intensity at different positions. Due to the introduction of diffraction gratings on the surface of the lenses, their optical performance is modified with the emergence of additional focal spots spatially separated by distances consistent with the theoretical and simulated values. The results indicate the applicability of the plasma focused ion beam systems for rapid fabrication of high-quality hybrid optical elements directly in hard substrates.

Original languageEnglish
Article number051601
Number of pages5
JournalJournal of Vacuum Science and Technology B: Nanotechnology and Microelectronics
Volume37
Issue number5
DOIs
Publication statusPublished - 1 Sep 2019

Keywords

  • Focused ion beam
  • Diffraction
  • Microoptics
  • Optical devices
  • Optical elements
  • Lenses

Cite this

@article{d65d43c4d4de4b6b9ec2ddce29106399,
title = "Hybrid refractive-diffractive microlenses in glass by focused Xe ion beam",
abstract = "The combination of refractive and diffractive components in a single optical element provides miniaturization of optical systems and enhancement of their performance. Thus, hybrid singlet lenses with diffractive structures added on top of the refractive curved surface were shown to have reduced chromatic and spherical aberration. Optical systems based on such hybrid lenses have reduced dimensions as they require fewer lenses for aberrations-correction. Diffractive elements provide additional possibilities of light manipulation and enable the realization of miniaturized multifocal systems, spectrometers, and other devices. Glass hybrid lenses are typically realized by diamond turning or glass moulding. These techniques, however, are not applicable for the fabrication of lenses in brittle materials or microlenses (hundreds of micrometers in diameter or less). On the other hand, direct writing techniques, such as focused ion beam (FIB) milling (typically Ga), offer a high resolution and flexibility of patterning on curved lens surfaces made of a great variety of materials. The disadvantages of FIB milling are its slow speed and Ga implantation that may alter or degrade the optical performance of fabricated components. FIB systems based on high brightness plasma ion sources provide more than an order of magnitude increase in milling rates with noble gas ions (e.g., Xe) compared with Ga FIBs. Here, the authors demonstrate the feasibility of rapid, direct milling of hybrid refractive-diffractive microlenses in glass using >60 nA of Xe ion current. Microlenses with up to 300-μm diameter were milled and diffraction gratings were realized on top of their curved surfaces. The performance of the lenses was characterized by mapping the transmitted intensity at different positions. Due to the introduction of diffraction gratings on the surface of the lenses, their optical performance is modified with the emergence of additional focal spots spatially separated by distances consistent with the theoretical and simulated values. The results indicate the applicability of the plasma focused ion beam systems for rapid fabrication of high-quality hybrid optical elements directly in hard substrates.",
keywords = "Focused ion beam, Diffraction, Microoptics, Optical devices, Optical elements, Lenses",
author = "Sergey Gorelick and {de Marco}, Alex",
year = "2019",
month = "9",
day = "1",
doi = "10.1116/1.5114953",
language = "English",
volume = "37",
journal = "Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics",
issn = "2166-2746",
publisher = "AIP Publishing",
number = "5",

}

Hybrid refractive-diffractive microlenses in glass by focused Xe ion beam. / Gorelick, Sergey; de Marco, Alex.

In: Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, Vol. 37, No. 5, 051601, 01.09.2019.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Hybrid refractive-diffractive microlenses in glass by focused Xe ion beam

AU - Gorelick, Sergey

AU - de Marco, Alex

PY - 2019/9/1

Y1 - 2019/9/1

N2 - The combination of refractive and diffractive components in a single optical element provides miniaturization of optical systems and enhancement of their performance. Thus, hybrid singlet lenses with diffractive structures added on top of the refractive curved surface were shown to have reduced chromatic and spherical aberration. Optical systems based on such hybrid lenses have reduced dimensions as they require fewer lenses for aberrations-correction. Diffractive elements provide additional possibilities of light manipulation and enable the realization of miniaturized multifocal systems, spectrometers, and other devices. Glass hybrid lenses are typically realized by diamond turning or glass moulding. These techniques, however, are not applicable for the fabrication of lenses in brittle materials or microlenses (hundreds of micrometers in diameter or less). On the other hand, direct writing techniques, such as focused ion beam (FIB) milling (typically Ga), offer a high resolution and flexibility of patterning on curved lens surfaces made of a great variety of materials. The disadvantages of FIB milling are its slow speed and Ga implantation that may alter or degrade the optical performance of fabricated components. FIB systems based on high brightness plasma ion sources provide more than an order of magnitude increase in milling rates with noble gas ions (e.g., Xe) compared with Ga FIBs. Here, the authors demonstrate the feasibility of rapid, direct milling of hybrid refractive-diffractive microlenses in glass using >60 nA of Xe ion current. Microlenses with up to 300-μm diameter were milled and diffraction gratings were realized on top of their curved surfaces. The performance of the lenses was characterized by mapping the transmitted intensity at different positions. Due to the introduction of diffraction gratings on the surface of the lenses, their optical performance is modified with the emergence of additional focal spots spatially separated by distances consistent with the theoretical and simulated values. The results indicate the applicability of the plasma focused ion beam systems for rapid fabrication of high-quality hybrid optical elements directly in hard substrates.

AB - The combination of refractive and diffractive components in a single optical element provides miniaturization of optical systems and enhancement of their performance. Thus, hybrid singlet lenses with diffractive structures added on top of the refractive curved surface were shown to have reduced chromatic and spherical aberration. Optical systems based on such hybrid lenses have reduced dimensions as they require fewer lenses for aberrations-correction. Diffractive elements provide additional possibilities of light manipulation and enable the realization of miniaturized multifocal systems, spectrometers, and other devices. Glass hybrid lenses are typically realized by diamond turning or glass moulding. These techniques, however, are not applicable for the fabrication of lenses in brittle materials or microlenses (hundreds of micrometers in diameter or less). On the other hand, direct writing techniques, such as focused ion beam (FIB) milling (typically Ga), offer a high resolution and flexibility of patterning on curved lens surfaces made of a great variety of materials. The disadvantages of FIB milling are its slow speed and Ga implantation that may alter or degrade the optical performance of fabricated components. FIB systems based on high brightness plasma ion sources provide more than an order of magnitude increase in milling rates with noble gas ions (e.g., Xe) compared with Ga FIBs. Here, the authors demonstrate the feasibility of rapid, direct milling of hybrid refractive-diffractive microlenses in glass using >60 nA of Xe ion current. Microlenses with up to 300-μm diameter were milled and diffraction gratings were realized on top of their curved surfaces. The performance of the lenses was characterized by mapping the transmitted intensity at different positions. Due to the introduction of diffraction gratings on the surface of the lenses, their optical performance is modified with the emergence of additional focal spots spatially separated by distances consistent with the theoretical and simulated values. The results indicate the applicability of the plasma focused ion beam systems for rapid fabrication of high-quality hybrid optical elements directly in hard substrates.

KW - Focused ion beam

KW - Diffraction

KW - Microoptics

KW - Optical devices

KW - Optical elements

KW - Lenses

UR - http://www.scopus.com/inward/record.url?scp=85070760026&partnerID=8YFLogxK

U2 - 10.1116/1.5114953

DO - 10.1116/1.5114953

M3 - Article

VL - 37

JO - Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics

JF - Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics

SN - 2166-2746

IS - 5

M1 - 051601

ER -