Human genetic defects in SRP19 and SRPRA cause severe congenital neutropenia with distinctive proteome changes

Monika I. Linder, Yoko Mizoguchi, Sebastian Hesse, Gergely Csaba, Megumi Tatematsu, Marcin Łyszkiewicz, Natalia Ziȩtara, Tim Jeske, Maximilian Hastreiter, Meino Rohlfs, Yanshan Liu, Piotr Grabowski, Kaarin Ahomaa, Daniela Maier-Begandt, Marko Schwestka, Vahid Pazhakh, Abdulsalam I. Isiaku, Brenda Briones Miranda, Piers Blombery, Megumu K. SaitoEjona Rusha, Zahra Alizadeh, Zahra Pourpak, Masao Kobayashi, Nima Rezaei, Ekrem Unal, Fabian Hauck, Micha Drukker, Barbara Walzog, Juri Rappsilber, Ralf Zimmer, Graham J. Lieschke, Christoph Klein

Research output: Contribution to journalArticleResearchpeer-review

11 Citations (Scopus)


The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell–based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.

Original languageEnglish
Pages (from-to)645-658
Number of pages14
Issue number6
Publication statusPublished - 9 Feb 2023

Cite this