Human body as antenna and its effect on human body communications

Behailu Kibret, Assefa K. Teshome, Daniel T. H. Lai

Research output: Contribution to journalArticleResearchpeer-review

31 Citations (Scopus)

Abstract

Human body communication (HBC) is a promising wireless technology that uses the human body as part of the communication channel. HBC operates in the near-field of the high frequency (HF) band and in the lower frequencies of the very high frequency (VHF) band, where the electromagnetic field has the tendency to be confined inside the human body. Electromagnetic interference poses a serious reliability issue in HBC; consequently, it has been given increasing attention in regard to adapting techniques to curtail its degrading effect. Nevertheless, there is a gap in knowledge on the mechanism of HBC interference that is prompted when the human body is exposed to electromagnetic fields as well as the effect of the human body as an antenna on HBC. This paper narrows the gap by introducing the mechanisms of HBC interference caused by electromagnetic field exposure of human body. We derived analytic expressions for induced total axial current in the body and associated fields in the vicinity of the body when an imperfectly conducting cylindrical antenna model of the human body is illuminated by a vertically polarized plane wave within the 1-200 MHz frequency range. Also, fields in the vicinity of the human body model from an on-body HBC transmitter are calculated. Furthermore, conducted electromagnetic interference on externally embedded HBC receivers is also addressed. The results show that the maximum HBC gain near 50 MHz is due to whole-body resonance, and the maximum at 80 MHz is due to the resonance of the arm. Similarly, the results also suggest that the magnitude of induced axial current in the body due to electromagnetic field exposure of human body is higher near 50 MHz.
Original languageEnglish
Pages (from-to)193-207
Number of pages15
JournalProgress in Electromagnetics Research
Volume148
DOIs
Publication statusPublished - 2014
Externally publishedYes

Cite this