Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury

Bryan Leaw, Dandan Zhu, Jean Tan, Ruth Muljadi, Mohamed I. Saad, Joanne C. Mockler, Euan M. Wallace, Rebecca Lim, Mary Tolcos

Research output: Contribution to journalArticleResearchpeer-review

Abstract

BACKGROUND: Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain.

METHODS: We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65% oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4.

RESULTS: At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45lowCD11b+) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity.

CONCLUSIONS: These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury.

Original languageEnglish
Article number46
Number of pages17
JournalStem Cell Research and Therapy
Volume8
Issue number1
DOIs
Publication statusPublished - 28 Feb 2017

Keywords

  • Amnion cell
  • Brain development
  • Cell therapy
  • Hyperoxia
  • Immunotherapy
  • Inflammation
  • Microglia
  • Perinatal brain injury

Cite this

@article{b7fb1eb6a61f4240ad42078ffad87767,
title = "Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury",
abstract = "BACKGROUND: Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain.METHODS: We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65{\%} oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4.RESULTS: At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45lowCD11b+) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity.CONCLUSIONS: These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury.",
keywords = "Amnion cell, Brain development, Cell therapy, Hyperoxia, Immunotherapy, Inflammation, Microglia, Perinatal brain injury",
author = "Bryan Leaw and Dandan Zhu and Jean Tan and Ruth Muljadi and Saad, {Mohamed I.} and Mockler, {Joanne C.} and Wallace, {Euan M.} and Rebecca Lim and Mary Tolcos",
year = "2017",
month = "2",
day = "28",
doi = "10.1186/s13287-017-0496-3",
language = "English",
volume = "8",
journal = "Stem Cell Research and Therapy",
issn = "1757-6512",
publisher = "BioMed Central",
number = "1",

}

Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury. / Leaw, Bryan; Zhu, Dandan; Tan, Jean; Muljadi, Ruth; Saad, Mohamed I.; Mockler, Joanne C.; Wallace, Euan M.; Lim, Rebecca; Tolcos, Mary.

In: Stem Cell Research and Therapy, Vol. 8, No. 1, 46, 28.02.2017.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury

AU - Leaw, Bryan

AU - Zhu, Dandan

AU - Tan, Jean

AU - Muljadi, Ruth

AU - Saad, Mohamed I.

AU - Mockler, Joanne C.

AU - Wallace, Euan M.

AU - Lim, Rebecca

AU - Tolcos, Mary

PY - 2017/2/28

Y1 - 2017/2/28

N2 - BACKGROUND: Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain.METHODS: We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65% oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4.RESULTS: At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45lowCD11b+) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity.CONCLUSIONS: These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury.

AB - BACKGROUND: Human amnion epithelial cells (hAECs) are clonogenic and have been proposed to reduce inflammatory-induced tissue injury. Perturbation of the immune response is implicated in the pathogenesis of perinatal brain injury; modulating this response could thus be a novel therapy for treating or preventing such injury. The immunomodulatory properties of hAECs have been shown in other animal models, but a detailed investigation of the effects on brain immune cells following injury has not been undertaken. Here, we investigate the effects of hAECs on microglia, the first immune responders to injury within the brain.METHODS: We generated a mouse model combining neonatal inflammation and perinatal hyperoxia, both of which are risk factors associated with perinatal brain injury. On embryonic day 16 we administered lipopolysaccharide (LPS), or saline (control), intra-amniotically to C57Bl/6 J mouse pups. On postnatal day (P)0, LPS pups were placed in hyperoxia (65% oxygen) and control pups in normoxia for 14 days. Pups were given either hAECs or saline intravenously on P4.RESULTS: At P14, relative to controls, LPS and hyperoxia pups had reduced body weight, increased density of apoptotic cells (TUNEL) in the cortex, striatum and white matter, astrocytes (GFAP) in the white matter and activated microglia (CD68) in the cortex and striatum, but no change in total microglia density (Iba1). hAEC administration rescued the decreased body weight and reduced apoptosis and astrocyte areal coverage in the white matter, but increased the density of total and activated microglia. We then stimulated primary microglia (CD45lowCD11b+) with LPS for 24 h, followed by co-culture with hAEC conditioned medium for 48 h. hAEC conditioned medium increased microglial phagocytic activity, decreased microglia apoptosis and decreased M1 activation markers (CD86). Stimulating hAECs for 24 h with LPS did not alter release of cytokines known to modulate microglia activity.CONCLUSIONS: These data demonstrate that hAECs can directly immunomodulate brain microglia, probably via release of trophic factors. This observation offers promise that hAECs may afford therapeutic utility in the management of perinatal brain injury.

KW - Amnion cell

KW - Brain development

KW - Cell therapy

KW - Hyperoxia

KW - Immunotherapy

KW - Inflammation

KW - Microglia

KW - Perinatal brain injury

UR - http://www.scopus.com/inward/record.url?scp=85020698768&partnerID=8YFLogxK

U2 - 10.1186/s13287-017-0496-3

DO - 10.1186/s13287-017-0496-3

M3 - Article

VL - 8

JO - Stem Cell Research and Therapy

JF - Stem Cell Research and Therapy

SN - 1757-6512

IS - 1

M1 - 46

ER -