Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Intrauterine inflammation is a significant cause of injury to the developing fetal brain. Using a preterm fetal sheep model of in utero infection, we asked whether human amnion epithelial cells (hAECs) were able to reduce inflammation-induced fetal brain injury. Surgery was undertaken on pregnant sheep at ~105 days gestation (term is 147 days) for implantation of vascular catheters. Lipopolysaccharide (LPS; 150 ng/kg bolus) or saline was administered IV at 109, 110, and 111 days. Sixty million fluorescent-labeled hAECs were administered at 110, 111, and 112 days gestation via the brachial artery catheter. Brains were collected at 114 days for histological assessment. hAECs were observed within the cortex, white matter, and hippocampus. Compared to control lambs, LPS administration was associated with significant and widespread fetal brain inflammation and injury as evidenced by increased number of activated microglia in the periventricular white matter (p = 0.02), increased pyknosis, cell degeneration (p = 0.01), and a nonsignificant trend of fewer oligodendrocytes in the subcortical and periventricular white matter. Administration of hAECs to LPS-treated animals was associated with a significant mitigation in both inflammation and injury as evidenced by fewer activated microglia (p = 0.03) and pyknotic cells (p = 0.03), significantly more oligodendrocytes in the subcortical and periventricular white matter (p = 0.01 and 0.02, respectively), and more myelin basic protein-positive cells within the periventricular white matter (p = 0.02). hAEC administration to fetal sheep exposed to multiple doses of LPS dampens the resultant fetal inflammatory response and mitigates associated brain injury.
Original languageEnglish
Pages (from-to)541-553
Number of pages13
JournalCell Transplantation: the regenerative medicine journal
Volume26
Issue number4
DOIs
Publication statusPublished - 2017

Keywords

  • Brain development
  • Fetal sheep
  • Human amnion epithelial cells (hAECs)
  • Inflammation
  • Lipopolysaccharide (LPS)
  • Oligodendrocytes

Cite this

@article{9ad32847cae9484eb9184a80da319726,
title = "Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus",
abstract = "Intrauterine inflammation is a significant cause of injury to the developing fetal brain. Using a preterm fetal sheep model of in utero infection, we asked whether human amnion epithelial cells (hAECs) were able to reduce inflammation-induced fetal brain injury. Surgery was undertaken on pregnant sheep at ~105 days gestation (term is 147 days) for implantation of vascular catheters. Lipopolysaccharide (LPS; 150 ng/kg bolus) or saline was administered IV at 109, 110, and 111 days. Sixty million fluorescent-labeled hAECs were administered at 110, 111, and 112 days gestation via the brachial artery catheter. Brains were collected at 114 days for histological assessment. hAECs were observed within the cortex, white matter, and hippocampus. Compared to control lambs, LPS administration was associated with significant and widespread fetal brain inflammation and injury as evidenced by increased number of activated microglia in the periventricular white matter (p = 0.02), increased pyknosis, cell degeneration (p = 0.01), and a nonsignificant trend of fewer oligodendrocytes in the subcortical and periventricular white matter. Administration of hAECs to LPS-treated animals was associated with a significant mitigation in both inflammation and injury as evidenced by fewer activated microglia (p = 0.03) and pyknotic cells (p = 0.03), significantly more oligodendrocytes in the subcortical and periventricular white matter (p = 0.01 and 0.02, respectively), and more myelin basic protein-positive cells within the periventricular white matter (p = 0.02). hAEC administration to fetal sheep exposed to multiple doses of LPS dampens the resultant fetal inflammatory response and mitigates associated brain injury.",
keywords = "Brain development, Fetal sheep, Human amnion epithelial cells (hAECs), Inflammation, Lipopolysaccharide (LPS), Oligodendrocytes",
author = "Tamara Yawno and Tharani Sabaretnam and Jingang Li and Courtney McDonald and Rebecca Lim and Graham Jenkin and Wallace, {Euan M.} and Miller, {Suzanne L.}",
year = "2017",
doi = "10.3727/096368916X693572",
language = "English",
volume = "26",
pages = "541--553",
journal = "Cell Transplantation: the regenerative medicine journal",
issn = "0963-6897",
publisher = "Cognizant Communication Corporation",
number = "4",

}

TY - JOUR

T1 - Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus

AU - Yawno, Tamara

AU - Sabaretnam, Tharani

AU - Li, Jingang

AU - McDonald, Courtney

AU - Lim, Rebecca

AU - Jenkin, Graham

AU - Wallace, Euan M.

AU - Miller, Suzanne L.

PY - 2017

Y1 - 2017

N2 - Intrauterine inflammation is a significant cause of injury to the developing fetal brain. Using a preterm fetal sheep model of in utero infection, we asked whether human amnion epithelial cells (hAECs) were able to reduce inflammation-induced fetal brain injury. Surgery was undertaken on pregnant sheep at ~105 days gestation (term is 147 days) for implantation of vascular catheters. Lipopolysaccharide (LPS; 150 ng/kg bolus) or saline was administered IV at 109, 110, and 111 days. Sixty million fluorescent-labeled hAECs were administered at 110, 111, and 112 days gestation via the brachial artery catheter. Brains were collected at 114 days for histological assessment. hAECs were observed within the cortex, white matter, and hippocampus. Compared to control lambs, LPS administration was associated with significant and widespread fetal brain inflammation and injury as evidenced by increased number of activated microglia in the periventricular white matter (p = 0.02), increased pyknosis, cell degeneration (p = 0.01), and a nonsignificant trend of fewer oligodendrocytes in the subcortical and periventricular white matter. Administration of hAECs to LPS-treated animals was associated with a significant mitigation in both inflammation and injury as evidenced by fewer activated microglia (p = 0.03) and pyknotic cells (p = 0.03), significantly more oligodendrocytes in the subcortical and periventricular white matter (p = 0.01 and 0.02, respectively), and more myelin basic protein-positive cells within the periventricular white matter (p = 0.02). hAEC administration to fetal sheep exposed to multiple doses of LPS dampens the resultant fetal inflammatory response and mitigates associated brain injury.

AB - Intrauterine inflammation is a significant cause of injury to the developing fetal brain. Using a preterm fetal sheep model of in utero infection, we asked whether human amnion epithelial cells (hAECs) were able to reduce inflammation-induced fetal brain injury. Surgery was undertaken on pregnant sheep at ~105 days gestation (term is 147 days) for implantation of vascular catheters. Lipopolysaccharide (LPS; 150 ng/kg bolus) or saline was administered IV at 109, 110, and 111 days. Sixty million fluorescent-labeled hAECs were administered at 110, 111, and 112 days gestation via the brachial artery catheter. Brains were collected at 114 days for histological assessment. hAECs were observed within the cortex, white matter, and hippocampus. Compared to control lambs, LPS administration was associated with significant and widespread fetal brain inflammation and injury as evidenced by increased number of activated microglia in the periventricular white matter (p = 0.02), increased pyknosis, cell degeneration (p = 0.01), and a nonsignificant trend of fewer oligodendrocytes in the subcortical and periventricular white matter. Administration of hAECs to LPS-treated animals was associated with a significant mitigation in both inflammation and injury as evidenced by fewer activated microglia (p = 0.03) and pyknotic cells (p = 0.03), significantly more oligodendrocytes in the subcortical and periventricular white matter (p = 0.01 and 0.02, respectively), and more myelin basic protein-positive cells within the periventricular white matter (p = 0.02). hAEC administration to fetal sheep exposed to multiple doses of LPS dampens the resultant fetal inflammatory response and mitigates associated brain injury.

KW - Brain development

KW - Fetal sheep

KW - Human amnion epithelial cells (hAECs)

KW - Inflammation

KW - Lipopolysaccharide (LPS)

KW - Oligodendrocytes

U2 - 10.3727/096368916X693572

DO - 10.3727/096368916X693572

M3 - Article

VL - 26

SP - 541

EP - 553

JO - Cell Transplantation: the regenerative medicine journal

JF - Cell Transplantation: the regenerative medicine journal

SN - 0963-6897

IS - 4

ER -