TY - JOUR
T1 - Honeybees can recognise images of complex natural scenes for use as potential landmarks
AU - Dyer, Adrian Geoffrey
AU - Rosa, Marcello Goncalves
AU - Reser, David Henry
PY - 2008
Y1 - 2008
N2 - The ability to navigate long distances to find rewarding flowers and return home is a key factor in the survival of honeybees (Apis mellifera). To reliably perform this task, bees combine both odometric and landmark cues, which potentially creates a dilemma since environments rich in odometric cues might be poor in salient landmark cues, and vice versa. In the present study, honeybees were provided with differential conditioning to images of complex natural scenes, in order to determine if they could reliably learn to discriminate between very similar scenes, and to recognise a learnt scene from a novel distractor scene. Choices made by individual bees were modelled with signal detection theory, and bees demonstrated an ability to discriminate between perceptually similar target and distractor views despite similar spatiotemporal content of the images. In a non-rewarded transfer test bees were also able to recognise target stimuli from novel distractors. These findings indicate that visual processing in bees is sufficiently accurate for recognising views of complex scenery as potential landmarks, which would enable bees flying in a forest to use trees both as landmark and/or odometric cues.
AB - The ability to navigate long distances to find rewarding flowers and return home is a key factor in the survival of honeybees (Apis mellifera). To reliably perform this task, bees combine both odometric and landmark cues, which potentially creates a dilemma since environments rich in odometric cues might be poor in salient landmark cues, and vice versa. In the present study, honeybees were provided with differential conditioning to images of complex natural scenes, in order to determine if they could reliably learn to discriminate between very similar scenes, and to recognise a learnt scene from a novel distractor scene. Choices made by individual bees were modelled with signal detection theory, and bees demonstrated an ability to discriminate between perceptually similar target and distractor views despite similar spatiotemporal content of the images. In a non-rewarded transfer test bees were also able to recognise target stimuli from novel distractors. These findings indicate that visual processing in bees is sufficiently accurate for recognising views of complex scenery as potential landmarks, which would enable bees flying in a forest to use trees both as landmark and/or odometric cues.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18375842
M3 - Article
SN - 0022-0949
VL - 211
SP - 1180
EP - 1186
JO - Journal of Experimental Biology
JF - Journal of Experimental Biology
IS - 8
ER -