TY - JOUR
T1 - Highly efficient and balanced charge transport in thieno[3,4-c] pyrrole-4,6-dione copolymers
T2 - dramatic influence of thieno[3,2-b] thiophene comonomer on alignment and charge transport
AU - Weller, Tina
AU - Rundel, Kira
AU - Krauss, Gert
AU - McNeill, Christopher R.
AU - Thelakkat, Mukundan
PY - 2018/4/12
Y1 - 2018/4/12
N2 - The design, synthesis, characterization, and application of a novel series of copolymers based on the electron deficient thieno[3,4-c]pyrrole-4,6-dione building block, copolymerized with either thieno[3,2-b]thiophene (PTPDTT) or thiophene (PTPDT), are reported. High molecular weights were obtained for PTPDTT via Stille polycondensation. For the PTPDTs, different molecular weights were achieved by varying the polymerization conditions. The increase in molecular weight (PTPDT-2) favors face-on alignment and increases the charge carrier mobility. Grazing-incidence wide-angle X-ray scattering measurements reveal higher crystallinity for PTPDTT with up to 5 orders of lamellar stacking compared to PTPDTs. All polymers show ambipolar charge transport with highly balanced hole and electron mobilities in organic field effect transistors (OFETs), which improve considerably upon thermal annealing. A shift of comonomer from simple thiophene in PTPDT-2 to planar and electron-dense thienothiophene in PTPDTT drastically changes the alignment from face-on to edge-on fashion. Consequently, the charge carrier mobility increases considerably by 1 order of magnitude in PTPDTT, reaching excellent charge carrier mobilities for both holes (0.11 cm2 V-1 s-1) and electrons (0.17 cm2 V-1 s-1). PTPDTT was tested as a donor material in combination with PC71BM as well as an acceptor material along with a donor polymer. As a donor material, a power conversion efficiency of 4.3% was reached in combination with PC71BM.
AB - The design, synthesis, characterization, and application of a novel series of copolymers based on the electron deficient thieno[3,4-c]pyrrole-4,6-dione building block, copolymerized with either thieno[3,2-b]thiophene (PTPDTT) or thiophene (PTPDT), are reported. High molecular weights were obtained for PTPDTT via Stille polycondensation. For the PTPDTs, different molecular weights were achieved by varying the polymerization conditions. The increase in molecular weight (PTPDT-2) favors face-on alignment and increases the charge carrier mobility. Grazing-incidence wide-angle X-ray scattering measurements reveal higher crystallinity for PTPDTT with up to 5 orders of lamellar stacking compared to PTPDTs. All polymers show ambipolar charge transport with highly balanced hole and electron mobilities in organic field effect transistors (OFETs), which improve considerably upon thermal annealing. A shift of comonomer from simple thiophene in PTPDT-2 to planar and electron-dense thienothiophene in PTPDTT drastically changes the alignment from face-on to edge-on fashion. Consequently, the charge carrier mobility increases considerably by 1 order of magnitude in PTPDTT, reaching excellent charge carrier mobilities for both holes (0.11 cm2 V-1 s-1) and electrons (0.17 cm2 V-1 s-1). PTPDTT was tested as a donor material in combination with PC71BM as well as an acceptor material along with a donor polymer. As a donor material, a power conversion efficiency of 4.3% was reached in combination with PC71BM.
UR - http://www.scopus.com/inward/record.url?scp=85045404536&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.7b11984
DO - 10.1021/acs.jpcc.7b11984
M3 - Article
AN - SCOPUS:85045404536
SN - 1932-7447
VL - 122
SP - 7565
EP - 7574
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 14
ER -