Highly crosslinked, chlorine tolerant polymer network entwined graphene oxide membrane for water desalination

Seungju Kim, Xiaocheng Lin, Ranwen Ou, Huiyuan Liu, Xiwang Zhang, George P. Simon, Christopher D. Easton, Huanting Wang

Research output: Contribution to journalArticleResearchpeer-review

93 Citations (Scopus)


Graphene and its derivatives are very attractive for constructing membranes for high-efficiency separation applications including water purification and desalination. To develop practical desalination membranes, strictly controlled inter-layer distance of graphene-based laminates and strong adhesion of graphene-based selective layers onto a porous polymer substrate are required to provide high salt rejection properties and desirable mechanical durability with chlorine tolerance in membrane processes. However, there is a difficulty in stabilizing graphene nanosheets as a membrane selective layer for the desalination process and controlling their interlayer distance. In this work, we demonstrate the successful fabrication of a graphene-based thin-film composite membrane by integrating graphene oxide (GO) nanosheets into a highly crosslinked polymer network on a porous polymer substrate. The resulting poly(N-isopropylacrylamide-co-N,N′-methylene-bisacrylamide) entwined GO thin-film composite membrane has a main GO interlayer spacing of 0.48 nm and a GO-polymer thin film of less than 40 nm thick and shows excellent water flux (25.8 L m-1 h-1) and salt rejection (a NaCl rejection of 99.9%), alongside excellent mechanical stability and chlorine tolerance for the forward osmosis process. This polymer network entwined GO thin-film composite can be effectively tailored as a platform material for developing high-performance osmosis desalination membranes for industrial application.

Original languageEnglish
Pages (from-to)1533-1540
Number of pages8
JournalJournal of Materials Chemistry A
Issue number4
Publication statusPublished - 2017

Cite this