Abstract
Graphene and its derivatives are very attractive for constructing membranes for high-efficiency separation applications including water purification and desalination. To develop practical desalination membranes, strictly controlled inter-layer distance of graphene-based laminates and strong adhesion of graphene-based selective layers onto a porous polymer substrate are required to provide high salt rejection properties and desirable mechanical durability with chlorine tolerance in membrane processes. However, there is a difficulty in stabilizing graphene nanosheets as a membrane selective layer for the desalination process and controlling their interlayer distance. In this work, we demonstrate the successful fabrication of a graphene-based thin-film composite membrane by integrating graphene oxide (GO) nanosheets into a highly crosslinked polymer network on a porous polymer substrate. The resulting poly(N-isopropylacrylamide-co-N,N′-methylene-bisacrylamide) entwined GO thin-film composite membrane has a main GO interlayer spacing of 0.48 nm and a GO-polymer thin film of less than 40 nm thick and shows excellent water flux (25.8 L m-1 h-1) and salt rejection (a NaCl rejection of 99.9%), alongside excellent mechanical stability and chlorine tolerance for the forward osmosis process. This polymer network entwined GO thin-film composite can be effectively tailored as a platform material for developing high-performance osmosis desalination membranes for industrial application.
Original language | English |
---|---|
Pages (from-to) | 1533-1540 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 5 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2017 |
Equipment
-
Centre for Electron Microscopy (MCEM)
Sorrell, F. (Manager) & Miller, P. (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility
-
Melbourne Centre for Nanofabrication
Langelier, S. (Manager)
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility