High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes

Min Liu, Mitchell D. Nothling, Paul A. Webley, Jianyong Jin, Qiang Fu, Greg G. Qiao

Research output: Contribution to journalArticleResearchpeer-review

74 Citations (Scopus)


Carbon capture from power plants represents a powerful technique to mitigate increasing greenhouse gas emissions. In this work, we describe a thin film composite (TFC) membrane incorporating a polymer of intrinsic microporosity (PIM-1) and metal organic framework (MOF) nanoparticles for post-combustion CO2 capture. The novel TFC membrane design consists of three layers: (1) a CO2 selective layer composed of a PIM-1@MOF mixed matrix; (2) an ultrapermeable PDMS gutter layer doped with MOF nanosheets; and (3) a porous polymeric substrate. Notably, the PDMS@MOF gutter layer incorporating amorphous nanosheets provides a CO2 permeance of 10,000–11,000 GPU, suggesting less gas transport resistance in comparison with pristine PDMS gutter layers. In addition, by blending nanosized MOF particles (MOF-74-Ni and NH2-UiO-66) into PIM-1 to afford a selective layer, the resultant TFC membrane assembly delivered improved CO2 permeance of 4660–7460 GPU and CO2/N2 selectivity of 26–33, compared with a pristine PIM-1 counterpart (CO2 permeance of 4320 GPU and CO2/N2 selectivity of 19). Furthermore, PIM-1@MOF based TFC membranes displayed an enhanced resistance to aging effect, maintaining a stable CO2 permeance of 900–1200 GPU and CO2/N2 selectivity of 26–30 after aging for 8 weeks. To the best of our knowledge, the high CO2 separation performance presented here is unprecedented for PIM-1 based TFC membranes reported in the open literature.

Original languageEnglish
Article number125328
Number of pages8
JournalChemical Engineering Journal
Publication statusPublished - 15 Sept 2020
Externally publishedYes


  • CO capture
  • High-throughput
  • Metal-organic frameworks
  • Polymers of intrinsic microporosity
  • Thin film composite membrane

Cite this