Projects per year
Abstract
Water-in-water (w/w) emulsions, comprising aqueous droplets within another continuous aqueous phase, rely on a low interfacial tension for stability. Thus far, it has been challenging to control their size and stability without the use of stabilizers. In this study, we introduce a microfluidic technique that addresses these challenges, producing stable w/w emulsions with precisely controlled size and uniformity. Results shows that using an acoustically actuated microfluidic mixer, PEG, Dextran, and alginate solutions (84.66 mPa.s viscosity difference) were homogenized rapidly, forming uniformly distributed w/w emulsions stabilized in alginate gels. The emulsion size, uniformity, and shear sensitivity can be tuned by modifying the alginate concentration. Biocompatibility was evaluated by monitoring the viability of kidney cells in the presence of emulsions and gels. In conclusion, this study not only showed emulsion formation with a high mixing efficiency exceeding 90 % for all viscosities, actuated at an optimized frequency of 1.064 MHz, but also demonstrated that an aqueous, solvent, and emulsifier-free composition exhibited remarkable biocompatibility, holding promise for precise drug delivery, cosmetics, and food applications.
Original language | English |
---|---|
Article number | 107120 |
Number of pages | 11 |
Journal | Ultrasonics Sonochemistry |
Volume | 111 |
DOIs | |
Publication status | Published - Dec 2024 |
Keywords
- Acoustofluidics
- Aqueous two-phase systems
- Emulsion encapsulation
- Microfluidic mixer
- Water-in-water emulsions
Projects
- 2 Finished
-
Next generation hand-held nebulisers for aerosol drug delivery: using microfluidics to tune particle size
Alan, T. (Primary Chief Investigator (PCI)), Traini, D. (Chief Investigator (CI)), Ong, H. (Chief Investigator (CI)), Flynn, D. (Chief Investigator (CI)) & Thompson, B. (Chief Investigator (CI))
1/01/21 → 31/12/24
Project: Research
-
ARC Centre of Excellence in Exciton Science
Mulvaney, P. (Primary Chief Investigator (PCI)), Ghiggino, K. P. (Chief Investigator (CI)), Smith, T. A. (Chief Investigator (CI)), Sader, J. E. (Chief Investigator (CI)), Wong, W. W. H. (Chief Investigator (CI)), Russo, S. (Chief Investigator (CI)), Cole, J. (Chief Investigator (CI)), Jasieniak, J. (Chief Investigator (CI)), Funston, A. (Chief Investigator (CI)), Bach, U. (Chief Investigator (CI)), Cheng, Y. (Chief Investigator (CI)), Lakhwani, G. (Chief Investigator (CI)), Widmer-Cooper, A. (Chief Investigator (CI)), McCamey, D. (Chief Investigator (CI)), Schmidt, T. (Chief Investigator (CI)), Gomez, D. E. (Partner Investigator (PI)), Scholes, F. (Partner Investigator (PI)), McCallum, R. (Partner Investigator (PI)), Dicinoski, G. (Partner Investigator (PI)), Du, C. (Partner Investigator (PI)), Plenio, M. B. (Partner Investigator (PI)), Tiang, J. (Partner Investigator (PI)), Neaton, J. (Partner Investigator (PI)), Lippitz, M. (Partner Investigator (PI)) & Hao, X. (Partner Investigator (PI))
Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal Department Contribution, Monash University – Internal University Contribution
30/06/17 → 30/06/24
Project: Research