TY - JOUR
T1 - Hierarchical covalent organic framework hollow nanofibers-bonded stainless steel fiber for efficient solid phase microextraction
AU - Fang, Yuanyuan
AU - Zhou, Fangzhou
AU - Zhang, Qian
AU - Deng, Chao
AU - Wu, Minying
AU - Shen, Hsin-hui
AU - Tang, Yi
AU - Wang, Yajun
N1 - Funding Information:
This work was financially supported by the National Key R&D Program of China ( 2018YFA0209402 , 2018YFC1602301 ) and the National Natural Science Foundation of China ( 22175132 ).
Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/15
Y1 - 2024/1/15
N2 - The solid phase microextraction (SPME) technique has been widely applied in the detection of trace compounds in food, environment, and medicine due to its advantages of easy quantification, simple operation, and greenness. Herein, a templating strategy with SiO2 nanofibers (SiO2 NFs) is reported to synthesize hierarchical covalent organic framework hollow nanofibers (COF HNFs)-coated stainless steel fiber for SPME application with dramatically enhanced enrichment performance for trace analytes. The construction of hierarchical porosity inside the microextraction coatings can not only increase the specific surface area of COF extraction materials for obtaining more abundant adsorption sites but also greatly improve the accessibility of internal COF micropores. Moreover, the thicknesses of the microextraction COF coatings can be facilely tailored by adjusting the amount of SiO2 NFs pre-assembled on the SPME fibers. On the headspace solid phase microextraction (HS-SPME) of antimicrobial residues, the developed COF TpBD-Me2 HNFs-12 fibers achieve enrichment factors of 2026 and 1823 for thymol and carvacrol respectively, which are significantly higher than those obtained from the counterpart COF TpBD-Me2-bonded fiber (8.5–8.2 times) and commercial CAR/PDMS fiber (3.3–4.4 times). Furthermore, the developed method was demonstrated to have wide linearity (0.1–50 μg L-1), low limits of detection (0.010 μg L-1), good thermal stability and excellent reusability (>60 recycles), demonstrating great application potential in the extraction of trace organic pollutants. The strategy developed in this work is applicable to preparing a variety of topological COF (e.g., TpBD, TpPa-1) HNFs-bonded fibers.
AB - The solid phase microextraction (SPME) technique has been widely applied in the detection of trace compounds in food, environment, and medicine due to its advantages of easy quantification, simple operation, and greenness. Herein, a templating strategy with SiO2 nanofibers (SiO2 NFs) is reported to synthesize hierarchical covalent organic framework hollow nanofibers (COF HNFs)-coated stainless steel fiber for SPME application with dramatically enhanced enrichment performance for trace analytes. The construction of hierarchical porosity inside the microextraction coatings can not only increase the specific surface area of COF extraction materials for obtaining more abundant adsorption sites but also greatly improve the accessibility of internal COF micropores. Moreover, the thicknesses of the microextraction COF coatings can be facilely tailored by adjusting the amount of SiO2 NFs pre-assembled on the SPME fibers. On the headspace solid phase microextraction (HS-SPME) of antimicrobial residues, the developed COF TpBD-Me2 HNFs-12 fibers achieve enrichment factors of 2026 and 1823 for thymol and carvacrol respectively, which are significantly higher than those obtained from the counterpart COF TpBD-Me2-bonded fiber (8.5–8.2 times) and commercial CAR/PDMS fiber (3.3–4.4 times). Furthermore, the developed method was demonstrated to have wide linearity (0.1–50 μg L-1), low limits of detection (0.010 μg L-1), good thermal stability and excellent reusability (>60 recycles), demonstrating great application potential in the extraction of trace organic pollutants. The strategy developed in this work is applicable to preparing a variety of topological COF (e.g., TpBD, TpPa-1) HNFs-bonded fibers.
KW - Covalent organic frameworks
KW - Enrichment factors
KW - Extraction fibers
KW - Hollow nanofibers
KW - Solid phase microextraction
UR - http://www.scopus.com/inward/record.url?scp=85171791745&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2023.125223
DO - 10.1016/j.talanta.2023.125223
M3 - Article
C2 - 37748274
AN - SCOPUS:85171791745
SN - 0039-9140
VL - 267
JO - Talanta
JF - Talanta
M1 - 125223
ER -