Heuristic online goal recognition in continuous domains

Mor Vered, Gal A. Kaminka

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

12 Citations (Scopus)


Goal recognition is the problem of inferring the goal of an agent, based on its observed actions. An inspiring approach—plan recognition by planning (PRP)—uses off-the-shelf planners to dynamically generate plans for given goals, eliminating the need for the traditional plan library. However, existing PRP formulation is inherently inefficient in online recognition, and cannot be used with motion planners for continuous spaces. In this paper, we utilize a different PRP formulation which allows for online goal recognition, and for application in continuous spaces. We present an online recognition algorithm, where two heuristic decision points may be used to improve run-time significantly over existing work. We specify heuristics for continuous domains, prove guarantees on their use, and empirically evaluate the algorithm over n hundreds of experiments in both a 3D navigational environment and a cooperative robotic team task.
Original languageEnglish
Title of host publicationProceedings of the 26th International Joint Conference on Artificial Intelligence
EditorsCarles Sierra
Place of PublicationMarina del Rey CA USA
PublisherAssociation for the Advancement of Artificial Intelligence (AAAI)
Number of pages8
ISBN (Electronic)9780999241103
ISBN (Print)9780999241110
Publication statusPublished - 2017
Externally publishedYes
EventInternational Joint Conference on Artificial Intelligence 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017
Conference number: 26th
https://www.ijcai.org/Proceedings/2017/ (Proceedings)


ConferenceInternational Joint Conference on Artificial Intelligence 2017
Abbreviated titleIJCAI 2017
Internet address


  • Plan Recognition
  • Mirroring
  • Online
  • Continuous Domains

Cite this