TY - JOUR
T1 - Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE
T2 - Insights From the PROSPECT Study
AU - Costopoulos, Charis
AU - Maehara, Akiko
AU - Huang, Yuan
AU - Brown, Adam J.
AU - Gillard, Jonathan H.
AU - Teng, Zhongzhao
AU - Stone, Gregg W.
AU - Bennett, Martin R.
PY - 2020/5
Y1 - 2020/5
N2 - Objectives: This study sought to determine if plaque structural stress (PSS) and other plaque stress parameters are increased in plaques that cause future major adverse cardiovascular event(s) (MACE) and if incorporating these parameters improves predictive capability of intravascular ultrasonography (IVUS). Background: Less than 10% of coronary plaques identified as high-risk by intravascular imaging result in subsequent MACE. Thus, more specific measurements of plaque vulnerability are required for effective risk stratification. Methods: Propensity score matching in the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study plaque cohort resulted in 35 nonculprit lesions (NCL) associated with future MACE and 66 matched NCL that remained clinically silent. PSS was calculated by finite element analysis as the mechanical loading within the plaque structure in the periluminal region. Results: PSS was increased in the minimal luminal area (MLA) regions of NCL MACE versus no MACE plaques for all plaques (PSS: 112.1 ± 5.5 kPa vs. 90.4 ± 3.3 kPa, respectively; p = 0.001) and virtual histology thin-cap fibroatheromas (VH-TCFAs) (PSS: 119.2 ± 6.6 kPa vs. 95.8 ± 5.0 kPa, respectively; p = 0.005). However, PSS was heterogeneous over short segments, and PSS heterogeneity index (HI) was markedly greater in NCL MACE than in no-MACE VH-TCFAs (HI: 0.43 ± 0.05 vs. 0.29 ± 0.03, respectively; p = 0.01). Inclusion of PSS in plaque assessment improved the identification of NCLs that led to MACE, including in VH-TCFAs (p = 0.03) and plaques with MLA ≤4 mm2 (p = 0.03). Incorporation of an HI further improved the ability of PSS to identify MACE NCLs in a variety of plaque subtypes including VH-TCFA (p = 0.001) and plaques with MLA ≤4 mm2 (p = 0.002). Conclusions: PSS and variations in PSS are increased in the peri-MLA regions of plaques that lead to MACE. Moreover, longitudinal heterogeneity in PSS is markedly increased in MACE plaques, especially VH-TCFAs, potentially predisposing to plaque rupture. Incorporation of PSS and heterogeneity in PSS may improve the ability of IVUS to predict MACE.
AB - Objectives: This study sought to determine if plaque structural stress (PSS) and other plaque stress parameters are increased in plaques that cause future major adverse cardiovascular event(s) (MACE) and if incorporating these parameters improves predictive capability of intravascular ultrasonography (IVUS). Background: Less than 10% of coronary plaques identified as high-risk by intravascular imaging result in subsequent MACE. Thus, more specific measurements of plaque vulnerability are required for effective risk stratification. Methods: Propensity score matching in the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study plaque cohort resulted in 35 nonculprit lesions (NCL) associated with future MACE and 66 matched NCL that remained clinically silent. PSS was calculated by finite element analysis as the mechanical loading within the plaque structure in the periluminal region. Results: PSS was increased in the minimal luminal area (MLA) regions of NCL MACE versus no MACE plaques for all plaques (PSS: 112.1 ± 5.5 kPa vs. 90.4 ± 3.3 kPa, respectively; p = 0.001) and virtual histology thin-cap fibroatheromas (VH-TCFAs) (PSS: 119.2 ± 6.6 kPa vs. 95.8 ± 5.0 kPa, respectively; p = 0.005). However, PSS was heterogeneous over short segments, and PSS heterogeneity index (HI) was markedly greater in NCL MACE than in no-MACE VH-TCFAs (HI: 0.43 ± 0.05 vs. 0.29 ± 0.03, respectively; p = 0.01). Inclusion of PSS in plaque assessment improved the identification of NCLs that led to MACE, including in VH-TCFAs (p = 0.03) and plaques with MLA ≤4 mm2 (p = 0.03). Incorporation of an HI further improved the ability of PSS to identify MACE NCLs in a variety of plaque subtypes including VH-TCFA (p = 0.001) and plaques with MLA ≤4 mm2 (p = 0.002). Conclusions: PSS and variations in PSS are increased in the peri-MLA regions of plaques that lead to MACE. Moreover, longitudinal heterogeneity in PSS is markedly increased in MACE plaques, especially VH-TCFAs, potentially predisposing to plaque rupture. Incorporation of PSS and heterogeneity in PSS may improve the ability of IVUS to predict MACE.
KW - intravascular imaging
KW - myocardial infarction
KW - plaque structural stress
KW - thin-cap fibroatheroma
UR - http://www.scopus.com/inward/record.url?scp=85082520129&partnerID=8YFLogxK
U2 - 10.1016/j.jcmg.2019.05.024
DO - 10.1016/j.jcmg.2019.05.024
M3 - Article
C2 - 31326476
AN - SCOPUS:85082520129
SN - 1936-878X
VL - 13
SP - 1206
EP - 1218
JO - JACC: Cardiovascular Imaging
JF - JACC: Cardiovascular Imaging
IS - 5
ER -