Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid β-spectrin structure, and function in red cell morphogenesis and membrane stability

E. C. Liao, B. H. Paw, L. L. Peters, A. Zapata, S. J. Pratt, C. P. Do, G. Lieschke, L. I. Zon

Research output: Contribution to journalArticleResearchpeer-review

70 Citations (Scopus)


Spectrins are key cytoskeleton proteins with roles in membrane integrity, cell morphology, organelle transport and cell polarity of varied cell types during development. Defects in erythroid spectrins in humans result in congenital hemolytic anemias with altered red cell morphology. Although well characterized in mammals and invertebrates, analysis of the structure and function of non-mammalian vertebrate spectrins has been lacking. The zebrafish riesling (ris) suffers from profound anemia, where the developing red cells fail to assume terminally differentiated erythroid morphology. Using comparative genomics, erythroid β-spectrin (sptb) was identified as the gene mutated in ris. Zebrafish Sptb shares 62.3% overall identity with the human ortholog and phylogenetic comparisons suggest intragenic duplication and divergence during evolution. Unlike the human and murine orthologs, the pleckstrin homology domain of zebrafish Sptb is not removed in red cells by alternative splicing. In addition, apoptosis and abnormal microtubule marginal band aggregation contribute to hemolysis of mutant erythrocytes, which are features not present in mammalian red cells with sptb defects. This study presents the first genetic characterization of a non-mammalian vertebrate sptb and demonstrates novel features of red cell hemolysis in non-mammalian red cells. Further, we propose that the distinct mammalian erythroid morphology may have evolved from specific modifications of Sptb structure and function.

Original languageEnglish
Pages (from-to)5123-5132
Number of pages10
Issue number23
Publication statusPublished - 2000
Externally publishedYes


  • Apoptosis
  • Erythroid β-spectrin
  • Hematopoiesis
  • Hereditary spherocytosis
  • Marginal band
  • Pleckstrin homology domain
  • Riesling
  • Sptb
  • Zebrafish

Cite this