Harnessing the potential of CRISPR/Cas in atherosclerosis: Disease modeling and therapeutic applications

Wei Sheng Siew, Yin Quan Tang, Chee Kei Kong, Bey Hing Goh, Serena Zacchigna, Kamal Dua, Dinesh Kumar Chellappan, Acharaporn Duangjai, Surasak Saokaew, Pochamana Phisalprapa, Wei Hsum Yap

Research output: Contribution to journalReview ArticleResearchpeer-review

2 Citations (Scopus)

Abstract

Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Ather-osclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live‐cell imaging, epigenetic modification, and genome landscaping. Mean-while, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single‐base DNA/RNA modifications. To date, many studies have uti-lized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof‐of‐concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correct-ing disease‐causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.

Original languageEnglish
Article number8422
Number of pages21
JournalInternational Journal of Molecular Sciences
Volume22
Issue number16
DOIs
Publication statusPublished - Aug 2021

Keywords

  • Atherosclerosis
  • CRISPR/Cas9
  • Gene editing
  • Gene therapy

Cite this