TY - JOUR
T1 - Harnessing Magnetite Poly(ethylene Glycol)-Block-Poly(propylene Glycol)-Block-Poly(ethylene Glycol) (PEG-PPG-PEG) Composites for Efficient Arsenic Removal in Water Treatment
AU - Dahlan, Nuraina Anisa
AU - Veeramachineni, Anand Kumar
AU - Paramasivam, Ragul
AU - Patti, Antonio
AU - Pushpamalar, Janarthanan
N1 - Funding Information:
Open Access funding enabled and organized by CAUL and its Member Institutions Thanks for the financial support from the Faculty of Science, Monash University Australia, under the Cross-Campus Initiative Fund numbered SCI/MUA/10–2017/006.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Elevated arsenic levels in soil and water resources due to improper waste management by industry cause detrimental impacts on the environment and human health due to its carcinogenicity and high toxicity. This work demonstrated a facile and scalable method for the synthesis of γ-Fe2O3-PEG-PPG-PEG composites for practical arsenic adsorption. The synthesis of γ-Fe2O3-PEG-PPG-PEG composites resulted in a high percentage yield of 91.4%. Morphological analyses confirmed the microstructures and crystallinity of γ-Fe2O3-PEG-PPG-PEG composites. Besides, HR-TEM showed a homogeneous distribution of γ-Fe2O3 nanoparticles with an average particle size of 25 nm. The peak at 452 cm−1 in FT-IR spectra corresponds to the Fe–O stretching vibration, thus confirming the presence of γ-Fe2O3 nanoparticles. The synthesized composites showed increasing surface area (31–117 m2/g) and thermal stability with increasing γ-Fe2O3 nanoparticle compositions. The As(V) batch adsorption study revealed efficient As(V) removal up to 56.5 µg/g determined by the Langmuir adsorption isotherm. Furthermore, the equilibrium adsorptions were attained between 30 and 120 min. Notably, the adsorption capacity of the γ-Fe2O3-PEG-PPG-PEG composites increased significantly as the As(V) initial concentration increases. The research findings showed that the γ-Fe2O3-PEG-PPG-PEG composites could be potential adsorbents to treat arsenic-contaminated wastewater. Besides, the synthesized composites were proven to be economical and practical for scaling up due to their high product yield.
AB - Elevated arsenic levels in soil and water resources due to improper waste management by industry cause detrimental impacts on the environment and human health due to its carcinogenicity and high toxicity. This work demonstrated a facile and scalable method for the synthesis of γ-Fe2O3-PEG-PPG-PEG composites for practical arsenic adsorption. The synthesis of γ-Fe2O3-PEG-PPG-PEG composites resulted in a high percentage yield of 91.4%. Morphological analyses confirmed the microstructures and crystallinity of γ-Fe2O3-PEG-PPG-PEG composites. Besides, HR-TEM showed a homogeneous distribution of γ-Fe2O3 nanoparticles with an average particle size of 25 nm. The peak at 452 cm−1 in FT-IR spectra corresponds to the Fe–O stretching vibration, thus confirming the presence of γ-Fe2O3 nanoparticles. The synthesized composites showed increasing surface area (31–117 m2/g) and thermal stability with increasing γ-Fe2O3 nanoparticle compositions. The As(V) batch adsorption study revealed efficient As(V) removal up to 56.5 µg/g determined by the Langmuir adsorption isotherm. Furthermore, the equilibrium adsorptions were attained between 30 and 120 min. Notably, the adsorption capacity of the γ-Fe2O3-PEG-PPG-PEG composites increased significantly as the As(V) initial concentration increases. The research findings showed that the γ-Fe2O3-PEG-PPG-PEG composites could be potential adsorbents to treat arsenic-contaminated wastewater. Besides, the synthesized composites were proven to be economical and practical for scaling up due to their high product yield.
KW - Adsorption
KW - Arsenic
KW - Nanotechnology
KW - Water treatment
KW - γ-FeO-PEG-PPG-PEG composites
UR - http://www.scopus.com/inward/record.url?scp=85165231917&partnerID=8YFLogxK
U2 - 10.1007/s41101-023-00205-z
DO - 10.1007/s41101-023-00205-z
M3 - Article
AN - SCOPUS:85165231917
SN - 2366-3340
VL - 8
JO - Water Conservation Science and Engineering
JF - Water Conservation Science and Engineering
IS - 1
M1 - 29
ER -