TY - JOUR
T1 - Guiding the immune response to a conserved epitope in msp2, an intrinsically disordered malaria vaccine candidate
AU - Seow, Jeffrey
AU - Das, Sreedam C.
AU - Morales, Rodrigo A.V.
AU - Ataide, Ricardo
AU - Krishnarjuna, Bankala
AU - Silk, Mitchell
AU - Chalmers, David K.
AU - Richards, Jack
AU - Anders, Robin F.
AU - Macraild, Christopher A.
AU - Norton, Raymond S.
N1 - Funding Information:
Funding: This research was funded in part by the National Health and Medical Research Council of Australia (project grant 1042520 and fellowships to J.S.R. and R.S.N.) and in part by an Australian Government Research Training Program Scholarship (to J.S.).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8/4
Y1 - 2021/8/4
N2 - The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
AB - The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
KW - Disordered protein
KW - Malaria
KW - Merozoite surface protein 2
KW - Peptide vaccines
KW - Structural vaccinology
UR - http://www.scopus.com/inward/record.url?scp=85112199102&partnerID=8YFLogxK
U2 - 10.3390/vaccines9080855
DO - 10.3390/vaccines9080855
M3 - Article
AN - SCOPUS:85112199102
SN - 2076-393X
VL - 9
JO - Vaccines
JF - Vaccines
IS - 8
M1 - 855
ER -