Growth of Caenorhabditis elegans in defined media is dependent on presence of particulate matter

Matthew R. Flavel, Adam Mechler, Mahdi Shahmiri, Elizabeth R. Mathews, Ashley E. Franks, Weisan Chen, Damien Zanker, Bo Xian, Shan Gao, Jing Luo, Surafel Tegegne, Christian Doneski, Markandeya Jois

Research output: Contribution to journalArticleResearchpeer-review

24 Citations (Scopus)

Abstract

Caenorhabditis elegans are typically cultured in a monoxenic medium consisting of live bacteria. However, this introduces a secondary organism to experiments, and restricts the manipulation of the nutritional environment. Due to the intricate link between genes and environment, greater control and understanding of nutritional factors are required to push the C. elegans field into new areas. For decades, attempts to develop a chemically defined, axenic medium as an alternative for culturing C. elegans have been made. However, the mechanism by which the filter feeder C. elegans obtains nutrients from these liquid media is not known. Using a fluorescence-activated cell sorting based approach, we demonstrate growth in all past axenic C. elegans media to be dependent on the presence of previously unknown particles. This particle requirement of C. elegans led to development of liposome-based, nanoparticle culturing that allows full control of nutrients delivered to C. elegans.

Original languageEnglish
Pages (from-to)567-575
Number of pages9
JournalG3: Genes, Genomes, Genetics
Volume8
Issue number2
DOIs
Publication statusPublished - 1 Feb 2018
Externally publishedYes

Keywords

  • Axenic media
  • Caenorhabditis elegans
  • Feeding
  • Liposomes
  • Nutrition

Cite this