TY - JOUR
T1 - Gray relational entropy analysis of high temperature performance of bio-asphalt binder and its mixture
AU - Gao, Junfeng
AU - Wang, Hainian
AU - You, Zhanping
AU - Yang, Xu
PY - 2018
Y1 - 2018
N2 - Most of the existing researches only focus on some performances of the bio-asphalt binders instead of the asphalt mixtures, and the relationship between the performance of bio-asphalt binder and the performance of the mixture has been rarely reported. To analyze the gray relational entropy of high temperature performance of bio-asphalt binder and mixture, the bio-asphalt modified by 1% SBS with the concentrations of 0% (50#), 5%, 10%, 15%, and 20% by the weight of bio-asphalt binder, respectively, was used in this study. The performance indexes of bio-asphalt binder were tested through the conventional performance test and Superpave test of asphalt. The correlation between the performance indexes of the asphalt binder and the dynamic stability of the mixture was studied through the gray relational entropy method. The results showed that the high temperature performance of bio-asphalt had a certain degree of reduction before RTFO with the incorporation of bio-oil. The binder test parameters showed different changes in the law with the changes of bio-oil content. The dynamic stability of bio-asphalt mixtures decreased with an increase in bio-oil content. The RTFO aging had a great influence on the entropy correlation between the performance indexes of the bio-asphalt binders and the dynamic stability of the mixture. The non-recoverable creep compliance of bio-asphalt with low content (1%) of SBS modifier was weakly correlated with the dynamic stability of the mixture. The dynamic viscosity of bio-asphalt and the dynamic stability of the mixture exhibited the highest gray entropy correlation, which could be used as the key index of high-temperature performance evaluation of bio-asphalt.
AB - Most of the existing researches only focus on some performances of the bio-asphalt binders instead of the asphalt mixtures, and the relationship between the performance of bio-asphalt binder and the performance of the mixture has been rarely reported. To analyze the gray relational entropy of high temperature performance of bio-asphalt binder and mixture, the bio-asphalt modified by 1% SBS with the concentrations of 0% (50#), 5%, 10%, 15%, and 20% by the weight of bio-asphalt binder, respectively, was used in this study. The performance indexes of bio-asphalt binder were tested through the conventional performance test and Superpave test of asphalt. The correlation between the performance indexes of the asphalt binder and the dynamic stability of the mixture was studied through the gray relational entropy method. The results showed that the high temperature performance of bio-asphalt had a certain degree of reduction before RTFO with the incorporation of bio-oil. The binder test parameters showed different changes in the law with the changes of bio-oil content. The dynamic stability of bio-asphalt mixtures decreased with an increase in bio-oil content. The RTFO aging had a great influence on the entropy correlation between the performance indexes of the bio-asphalt binders and the dynamic stability of the mixture. The non-recoverable creep compliance of bio-asphalt with low content (1%) of SBS modifier was weakly correlated with the dynamic stability of the mixture. The dynamic viscosity of bio-asphalt and the dynamic stability of the mixture exhibited the highest gray entropy correlation, which could be used as the key index of high-temperature performance evaluation of bio-asphalt.
KW - Bio-asphalt
KW - Gray relational entropy
KW - High temperature performance
KW - Road engineering
UR - http://www.scopus.com/inward/record.url?scp=85044920123&partnerID=8YFLogxK
U2 - 10.1016/j.ijprt.2018.02.001
DO - 10.1016/j.ijprt.2018.02.001
M3 - Article
AN - SCOPUS:85044920123
SN - 1996-6814
VL - 11
SP - 698
EP - 708
JO - International Journal of Pavement Research and Technology
JF - International Journal of Pavement Research and Technology
IS - 7
ER -