Projects per year
Abstract
We carry out astrophysical inference for compact binary merger events in LIGO-Virgo's first gravitational-wave transient catalog (GWTC-1) using a physically motivated calibration model. We demonstrate that importance sampling can be used to reduce the cost of what would otherwise be a computationally challenging analysis for signal-to-noise ratios of current gravitational-wave detections. We show that including the physical estimate for the calibration error distribution has negligible impact on the inference of parameters for the events in GWTC-1. Studying a simulated signal with matched filter signal-to-noise ratio SNR=200, we project that a calibration error estimate typical of GWTC-1 is likely to be negligible for the current generation of gravitational-wave detectors. We argue that other sources of systematic error - from waveforms, prior distributions, and noise modeling - are likely to be more important. Finally, using the events in GWTC-1 as standard sirens, we infer an astrophysically informed improvement on the estimate of the calibration error in the LIGO interferometers.
Original language | English |
---|---|
Article number | 122004 |
Number of pages | 12 |
Journal | Physical Review D |
Volume | 102 |
Issue number | 12 |
DOIs | |
Publication status | Published - 18 Dec 2020 |
-
ARC Centre of Excellence for Gravitational Wave Discovery
Bailes, M., McClelland, D. E., Levin, Y., Blair, D. G., Scott, S. M., Ottaway, D. J., Melatos, A., Veitch, P. J., Wen, L., Shaddock, D. A., Slagmolen, B. J. J., Zhao, C., Evans, R. J., Ju, L., Galloway, D., Thrane, E., Hurley, J., Coward, D. M., Cooke, J., Couch, W., Hobbs, G. B., Reitze, D., Rowan, S., Cai, R., Adhikari, R. X., Danzmann, K., Mavalvala, N., Kulkarni, S. R., Kramer, M., Branchesi, M., Gehrels, N., Weinstein, A. J. R., Steeghs, D., Bock, D. & Lasky, P.
Monash University – Internal University Contribution, Monash University – Internal Department Contribution
1/01/17 → 31/03/24
Project: Research
-
Putting Einstein to the Test: Probing Gravity with Gravitational Waves
1/05/18 → 31/12/20
Project: Research
-
Extreme astrophysics in the age of gravitational waves
Australian Research Council (ARC), Monash University
30/06/17 → 18/11/21
Project: Research