Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease

Evelyn Tsantikos, Maverick Lau, Cassandra M.N. Castelino, Mhairi J. Maxwell, Samantha L. Passey, Michelle J. Hansen, Narelle E. McGregor, Natalie A. Sims, Daniel P. Steinfort, Louis B. Irving, Gary P. Anderson, Margaret L. Hibbs

Research output: Contribution to journalArticleResearchpeer-review

29 Citations (Scopus)

Abstract

Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.

Original languageEnglish
Pages (from-to)2406-2418
Number of pages13
JournalJournal of Clinical Investigation
Volume128
Issue number6
DOIs
Publication statusPublished - 1 Jun 2018

Cite this