GM-CSF-responsive monocyte-derived dendritic cells are pivotal in TH17 pathogenesis

Hyun Ja Ko, Jamie L. Brady, Vic Ryg-Cornejo, Diana S. Hansen, David Vremec, Ken Shortman, Yifan Zhan, Andrew M. Lew

Research output: Contribution to journalArticleResearchpeer-review

95 Citations (Scopus)

Abstract

Although multiple dendritic cell (DC) subsets have the potential to induce Th17 differentiation in vitro, the key DC that is critical in Th17 induction and Th17-mediated disease remains moot. In this study, we revealed that CCR2+ monocyte-derived DCs (moDCs), but not conventional DCs, were critical for in vivo Th17 induction and autoimmune inflammation. Functional comparison in vitro indicated that moDCs are the most potent type of Th17-inducing DCs compared with conventional DCs and plasmacytoid DCs. Furthermore, we demonstrated that the importance of GM-CSF in Th17 induction and Th17-mediated disease is its endowment of moDCs to induce Th17 differentiation in vivo, although it has little effect on moDC numbers. Our findings identify the in vivo cellular targets that can be selectively manipulated to ameliorate Th17-mediated inflammatory diseases, as well as the mechanism of GM-CSF antagonism in such diseases.

Original languageEnglish
Pages (from-to)2202-2209
Number of pages8
JournalJournal of Immunology
Volume192
Issue number5
DOIs
Publication statusPublished - Mar 2014
Externally publishedYes

Cite this