Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways

Natalie A. Sims, Brendan J. Jenkins, Julian M.W. Quinn, Akira Nakamura, Markus Glatt, Matthew T. Gillespie, Matthias Ernst, T. John Martin

Research output: Contribution to journalArticleResearchpeer-review

152 Citations (Scopus)

Abstract

The gp130-dependent cytokines, which signal through at least two intracellular pathways, regulate osteoclast and osteoblast formation. To define their roles in regulating bone mass, we analyzed mice in which gp130 signaling via either the signal transducer and activator of transcription (STAT) 1/3 (gp130ΔSTAT/ΔSTAT) or SHP2/ras/MAPK (gp130 Y757F/Y757F) pathway was attenuated. In gp130ΔSTAT/Δ STAT mice, trabecular bone volume (BV/TV) and turnover were normal, but bone length was reduced by premature growth plate closure, indicating an essential role for gp130-STAT1/3 signaling in chondrocyte differentiation. In contrast, while bone size was normal in gp130Y757F/Y757F mice, BV/TV was reduced due to high bone turnover, indicated by high osteoclast surface/ bone surface (OcS/BS) and osteoblast surface/bone surface (ObS/BS). Furthermore, generation of functional osteoclasts from bone marrow of gp130 Y757F/Y757F mice was elevated, revealing that while gp130 family cytokines stimulate osteoclastogenesis through the osteoblast lineage, gp130, via SHP2/Ras/MAPK, inhibits osteoclastogenesis in a cell lineage-autonomous manner. Genetic ablation of IL-6 in gp130Y757F/Y757F mice exacerbated this osteopenia by reducing ObS/BS without affecting OcS/BS. Thus, while IL-6 is critical for high bone formation in gp130Y757F/Y757F mice, it is not involved in the increased osteoclastogenesis. In conclusion, gp130 is essential for normal bone growth and trabecular bone mass, with balanced regulation depending on selective activation of STAT1/3 and SHP2/ras/MAPK, respectively. Furthermore, the latter pathway can directly inhibit osteoclastogenesis in vivo.

Original languageEnglish
Pages (from-to)379-389
Number of pages11
JournalJournal of Clinical Investigation
Volume113
Issue number3
DOIs
Publication statusPublished - 1 Jan 2004
Externally publishedYes

Cite this