Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation

Jennifer L Catto, Erica Madonna, Hanna Joos, Irina Rudeva, Ian Simmonds

Research output: Contribution to journalArticleResearchpeer-review

22 Citations (Scopus)

Abstract

Extratropical cyclones are responsible for many extreme precipitation events in the midlatitudes. Warm conveyor belts (WCBs) and fronts are known to be related to the uplift and hence the precipitation within cyclones. The authors have investigated the link between WCBs and fronts and how such a link impacts the occurrence of extreme precipitation events. WCB trajectories have been calculated from the ERA-Interim dataset, and low-level (below 790 hPa) and midlevel (790-600 hPa) WCBs have been considered. These have been matched with objectively identified fronts (i.e., characterized by an overlap of WCB and front somewhere along the front). About 10% of cold fronts, 8% of warm fronts (identified using a thermal criterion), and 15% of wind fronts (identified using a wind shift method) are matched with WCBs, while up to 70% of WCBs are matched with fronts. Some WCBs, especially in the Southern Hemisphere, are not matched with either type of front (up to 70% east of Australia). The relationship between WCBs and fronts does not change much between the low levels and midlevels, indicating that the WCBs are already strongly associated with fronts during the lowest part of their ascent, although in the Southern Hemisphere the WCBs are more often related to warm fronts during their midtropospheric ascent. In parts of the midlatitudes, more than 60% of extreme precipitation events match either cold or warm fronts, and up to 90% of these have matched WCBs. Fronts associated with WCBs are found to be between 2 and 10 times more likely to produce extreme precipitation events than fronts without associated WCBs.
Original languageEnglish
Pages (from-to)8411-8429
Number of pages19
JournalJournal of Climate
Volume28
Issue number21
DOIs
Publication statusPublished - 1 Nov 2015

Cite this