Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia

Gerald L. Murray, Kirill Tsyganov, Xenia P. Kostoulias, Dieter M. Bulach, David Powell, Darren J. Creek, John D. Boyce, Ian T Paulsen, Anton Y. Peleg

Research output: Contribution to journalArticleResearchpeer-review

17 Citations (Scopus)

Abstract

Background.: Acinetobacter baumannii is a pathogen of major importance in intensive care units worldwide, with the potential to cause problematic outbreaks and acquire high-level resistance to antibiotics. There is an urgent need to understand the mechanisms of A. baumannii pathogenesis for the future development of novel targeted therapies. In this study we performed an in vivo transcriptomic analysis of A. baumannii isolated from a mammalian host with bacteremia.

Methods.: Mice were infected with A. baumannii American Type Culture Collection 17978 using an intraperitoneal injection, and blood was extracted at 8 hours to purify bacterial RNA for RNA-Seq with an Illumina platform.

Results.: Approximately one-quarter of A. baumannii protein coding genes were differentially expressed in vivo compared with in vitro (false discovery rate, ≤0.001; 2-fold change) with 557 showing decreased and 329 showing increased expression. Gene groups with functions relating to translation and RNA processing were overrepresented in genes with increased expression, and those relating to chaperone and protein turnover were overrepresented in the genes with decreased expression. The most strongly up-regulated genes corresponded to the 3 recognized siderophore iron uptake clusters, reflecting the iron-restrictive environment in vivo. Metabolic changes in vivo included reduced expression of genes involved in amino acid and fatty acid transport and catabolism, indicating metabolic adaptation to a different nutritional environment. Genes encoding types I and IV pili, quorum sensing components, and proteins involved in biofilm formation all showed reduced expression. Many genes that have been reported as essential for virulence showed reduced or unchanged expression in vivo.

Conclusion.: This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.

Original languageEnglish
Pages (from-to)S52-S57
JournalJournal of Infectious Diseases
Volume215
Issue number1
DOIs
Publication statusPublished - 15 Feb 2017

Keywords

  • A. baumannii
  • in vivo transcriptome
  • pathogenesis
  • RNA-Seq
  • virulence factors

Cite this

@article{6959cea1c8bd417b985c11ef58210c66,
title = "Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia",
abstract = "Background.: Acinetobacter baumannii is a pathogen of major importance in intensive care units worldwide, with the potential to cause problematic outbreaks and acquire high-level resistance to antibiotics. There is an urgent need to understand the mechanisms of A. baumannii pathogenesis for the future development of novel targeted therapies. In this study we performed an in vivo transcriptomic analysis of A. baumannii isolated from a mammalian host with bacteremia.Methods.: Mice were infected with A. baumannii American Type Culture Collection 17978 using an intraperitoneal injection, and blood was extracted at 8 hours to purify bacterial RNA for RNA-Seq with an Illumina platform.Results.: Approximately one-quarter of A. baumannii protein coding genes were differentially expressed in vivo compared with in vitro (false discovery rate, ≤0.001; 2-fold change) with 557 showing decreased and 329 showing increased expression. Gene groups with functions relating to translation and RNA processing were overrepresented in genes with increased expression, and those relating to chaperone and protein turnover were overrepresented in the genes with decreased expression. The most strongly up-regulated genes corresponded to the 3 recognized siderophore iron uptake clusters, reflecting the iron-restrictive environment in vivo. Metabolic changes in vivo included reduced expression of genes involved in amino acid and fatty acid transport and catabolism, indicating metabolic adaptation to a different nutritional environment. Genes encoding types I and IV pili, quorum sensing components, and proteins involved in biofilm formation all showed reduced expression. Many genes that have been reported as essential for virulence showed reduced or unchanged expression in vivo.Conclusion.: This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.",
keywords = "A. baumannii, in vivo transcriptome, pathogenesis, RNA-Seq, virulence factors",
author = "Murray, {Gerald L.} and Kirill Tsyganov and Kostoulias, {Xenia P.} and Bulach, {Dieter M.} and David Powell and Creek, {Darren J.} and Boyce, {John D.} and Paulsen, {Ian T} and Peleg, {Anton Y.}",
year = "2017",
month = "2",
day = "15",
doi = "10.1093/infdis/jiw529",
language = "English",
volume = "215",
pages = "S52--S57",
journal = "Journal of Infectious Diseases",
issn = "0022-1899",
publisher = "Oxford University Press",
number = "1",

}

Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. / Murray, Gerald L.; Tsyganov, Kirill; Kostoulias, Xenia P.; Bulach, Dieter M.; Powell, David; Creek, Darren J.; Boyce, John D.; Paulsen, Ian T; Peleg, Anton Y.

In: Journal of Infectious Diseases, Vol. 215, No. 1, 15.02.2017, p. S52-S57.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia

AU - Murray, Gerald L.

AU - Tsyganov, Kirill

AU - Kostoulias, Xenia P.

AU - Bulach, Dieter M.

AU - Powell, David

AU - Creek, Darren J.

AU - Boyce, John D.

AU - Paulsen, Ian T

AU - Peleg, Anton Y.

PY - 2017/2/15

Y1 - 2017/2/15

N2 - Background.: Acinetobacter baumannii is a pathogen of major importance in intensive care units worldwide, with the potential to cause problematic outbreaks and acquire high-level resistance to antibiotics. There is an urgent need to understand the mechanisms of A. baumannii pathogenesis for the future development of novel targeted therapies. In this study we performed an in vivo transcriptomic analysis of A. baumannii isolated from a mammalian host with bacteremia.Methods.: Mice were infected with A. baumannii American Type Culture Collection 17978 using an intraperitoneal injection, and blood was extracted at 8 hours to purify bacterial RNA for RNA-Seq with an Illumina platform.Results.: Approximately one-quarter of A. baumannii protein coding genes were differentially expressed in vivo compared with in vitro (false discovery rate, ≤0.001; 2-fold change) with 557 showing decreased and 329 showing increased expression. Gene groups with functions relating to translation and RNA processing were overrepresented in genes with increased expression, and those relating to chaperone and protein turnover were overrepresented in the genes with decreased expression. The most strongly up-regulated genes corresponded to the 3 recognized siderophore iron uptake clusters, reflecting the iron-restrictive environment in vivo. Metabolic changes in vivo included reduced expression of genes involved in amino acid and fatty acid transport and catabolism, indicating metabolic adaptation to a different nutritional environment. Genes encoding types I and IV pili, quorum sensing components, and proteins involved in biofilm formation all showed reduced expression. Many genes that have been reported as essential for virulence showed reduced or unchanged expression in vivo.Conclusion.: This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.

AB - Background.: Acinetobacter baumannii is a pathogen of major importance in intensive care units worldwide, with the potential to cause problematic outbreaks and acquire high-level resistance to antibiotics. There is an urgent need to understand the mechanisms of A. baumannii pathogenesis for the future development of novel targeted therapies. In this study we performed an in vivo transcriptomic analysis of A. baumannii isolated from a mammalian host with bacteremia.Methods.: Mice were infected with A. baumannii American Type Culture Collection 17978 using an intraperitoneal injection, and blood was extracted at 8 hours to purify bacterial RNA for RNA-Seq with an Illumina platform.Results.: Approximately one-quarter of A. baumannii protein coding genes were differentially expressed in vivo compared with in vitro (false discovery rate, ≤0.001; 2-fold change) with 557 showing decreased and 329 showing increased expression. Gene groups with functions relating to translation and RNA processing were overrepresented in genes with increased expression, and those relating to chaperone and protein turnover were overrepresented in the genes with decreased expression. The most strongly up-regulated genes corresponded to the 3 recognized siderophore iron uptake clusters, reflecting the iron-restrictive environment in vivo. Metabolic changes in vivo included reduced expression of genes involved in amino acid and fatty acid transport and catabolism, indicating metabolic adaptation to a different nutritional environment. Genes encoding types I and IV pili, quorum sensing components, and proteins involved in biofilm formation all showed reduced expression. Many genes that have been reported as essential for virulence showed reduced or unchanged expression in vivo.Conclusion.: This study provides the first insight into A. baumannii gene expression profiles during a life-threatening mammalian infection. Analysis of differentially regulated genes highlights numerous potential targets for the design of novel therapeutics.

KW - A. baumannii

KW - in vivo transcriptome

KW - pathogenesis

KW - RNA-Seq

KW - virulence factors

UR - http://www.scopus.com/inward/record.url?scp=85020374439&partnerID=8YFLogxK

U2 - 10.1093/infdis/jiw529

DO - 10.1093/infdis/jiw529

M3 - Article

VL - 215

SP - S52-S57

JO - Journal of Infectious Diseases

JF - Journal of Infectious Diseases

SN - 0022-1899

IS - 1

ER -