Projects per year
Abstract
There has recently been interest in understanding the differences between specific levels of global warming, especially the Paris Agreement limits of 1.5 °C and 2 °C above pre-industrial levels. However, different model experiments1–3 have been used in these analyses under varying rates of increase in global-average temperature. Here, we use climate model simulations to show that, for a given global temperature, most land is significantly warmer in a rapidly warming (transient) case than in a quasi-equilibrium climate. This results in more than 90% of the world’s population experiencing a warmer local climate under transient global warming than equilibrium global warming. Relative to differences between the 1.5 °C and 2 °C global warming limits, the differences between transient and quasi-equilibrium states are substantial. For many land regions, the probability of very warm seasons is at least two times greater in a transient climate than in a quasi-equilibrium equivalent. In developing regions, there are sizable differences between transient and quasi-equilibrium climates that underline the importance of explicitly framing projections. Our study highlights the need to better understand differences between future climates under rapid warming and quasi-equilibrium conditions for the development of climate change adaptation policies. Yet, current multi-model experiments1,4 are not designed for this purpose.
Original language | English |
---|---|
Pages (from-to) | 42-47 |
Number of pages | 6 |
Journal | Nature Climate Change |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2020 |
-
ARC Centre of Excellence for Climate Extremes
Pitman, A. J., Jakob, C., Alexander, L., Reeder, M., Roderick, M., England, M. H., Abramowitz, G., Abram, N., Arblaster, J., Bindoff, N. L., Dommenget, D., Evans, J. P., Hogg, A. M., Holbrook, N. J., Karoly, D. J., Lane, T. P., Sherwood, S. C., Strutton, P., Ebert, E., Hendon, H., Hirst, A. C., Marsland, S., Matear, R., Protat, A., Wang, Y., Wheeler, M. C., Best, M. J., Brody, S., Grabowski, W., Griffies, S., Gruber, N., Gupta, H., Hallberg, R., Hohenegger, C., Knutti, R., Meehl, G. A., Milton, S., de Noblet-Ducoudre, N., Or, D., Petch, J., Peters-Lidard, C., Overpeck, J., Russell, J., Santanello, J., Seneviratne, S. I., Stephens, G., Stevens, B., Stott, P. A. & Saunders, K.
Monash University – Internal University Contribution, Monash University – Internal School Contribution, Monash University – Internal Faculty Contribution, University of New South Wales (UNSW), Australian National University (ANU), University of Melbourne, University of Tasmania, Bureau of Meteorology (BOM) (Australia), Department of Planning and Environment (DPE) (New South Wales)
1/01/17 → 31/12/24
Project: Research
-
Megadrought likelihood and its water resource impacts in Australia
Gallant, A., Gergis, J., Karoly, D. J., Nathan, R., Peel, M., Steendam, G. & Tan, K. S.
Department of Energy, Environment and Climate Action (DEECA) (Victoria), Melbourne Water Corporation (trading as Melbourne Water) (Victoria), Australian Research Council (ARC), Bureau of Meteorology (BOM) (Australia), University of Melbourne, Monash University – Internal School Contribution
1/07/15 → 30/10/20
Project: Research