TY - JOUR
T1 - Genomic surveillance of antimicrobial resistant bacterial colonisation and infection in intensive care patients
AU - Wyres, Kelly L.
AU - Hawkey, Jane
AU - Mirčeta, Mirianne
AU - Judd, Louise M.
AU - Wick, Ryan R.
AU - Gorrie, Claire L.
AU - Pratt, Nigel F.
AU - Garlick, Jill S.
AU - Watson, Kerrie M.
AU - Pilcher, David V.
AU - McGloughlin, Steve A.
AU - Abbott, Iain J.
AU - Macesic, Nenad
AU - Spelman, Denis W.
AU - Jenney, Adam W.J.
AU - Holt, Kathryn E.
N1 - Funding Information:
We gratefully acknowledge the contribution and support of Janine Roney, Mellissa Bryant, Jennifer Williams, and Noelene Browne at the Alfred Hospital, and the sequencing team at the Wellcome Trust Sanger Institute. We also acknowledge the curators of the relevant MLST schemes and the developers of the PubMLST website (https://pubmlst.org/), Keith Jolley and Martin Maiden. The development of that website was funded by the Wellcome Trust.
Funding Information:
This work was supported by the National Health and Medical Research Council of Australia (Project Grant 1043822, Investigator Grant APP1176192 to KLW), the Viertel Charitable Foundation of Australia (Senior Medical Research Fellowship to KEH.) and this work was supported, in whole or in part, by the Bill & Melinda Gates Foundation (OPP1175797). Under the grant conditions of the Bill and Melinda Gates Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version that might arise from this submission. The funders played no role in the design of the study, the collection, analysis or interpretation of data, or writing the manuscript.
Funding Information:
We gratefully acknowledge the contribution and support of Janine Roney, Mellissa Bryant, Jennifer Williams, and Noelene Browne at the Alfred Hospital, and the sequencing team at the Wellcome Trust Sanger Institute. We also acknowledge the curators of the relevant MLST schemes and the developers of the PubMLST website ( https://pubmlst.org/ ), Keith Jolley and Martin Maiden. The development of that website was funded by the Wellcome Trust.
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/7/14
Y1 - 2021/7/14
N2 - Background: Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention efforts. Methods: We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103 patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies. Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by read mapping and variant calling against these references. Results: Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively. Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low, but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3). While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4), all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02). Conclusions: 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of 3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection control.
AB - Background: Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention efforts. Methods: We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103 patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies. Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by read mapping and variant calling against these references. Results: Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively. Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low, but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3). While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4), all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02). Conclusions: 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of 3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection control.
KW - Antimicrobial resistance (AMR)
KW - Colonisation
KW - Genomic surveillance
KW - Intensive care
KW - Transmission
UR - http://www.scopus.com/inward/record.url?scp=85110381868&partnerID=8YFLogxK
U2 - 10.1186/s12879-021-06386-z
DO - 10.1186/s12879-021-06386-z
M3 - Article
C2 - 34261450
AN - SCOPUS:85110381868
SN - 1471-2334
VL - 21
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
IS - 1
M1 - 683
ER -