TY - JOUR
T1 - Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000–2016
AU - Monte, Daniel F.
AU - Lincopan, Nilton
AU - Berman, Hanna
AU - Cerdeira, Louise
AU - Keelara, Shivaramu
AU - Thakur, Siddhartha
AU - Fedorka-Cray, Paula J.
AU - Landgraf, Mariza
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S. enterica serovars S. Schwarzengrund ST96, S. Typhimurium ST19, S. Minnesota ST548, S. Infantis ST32, S. Heidelberg ST15, S. Newport ST45, S. Brandenburg ST65 and S. Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S. Typhimurium from food chain), qnrB19, qnrS1, blaCTX-M-8, blaCTX-M-2 and blaCMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S. enterica serovars S. Infantis, S. Schwarzengrund, S. Minnesota, S. Kentucky and S. Brandenburg. In brief, ocurrence and persistence of international lineages of S. enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
AB - Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S. enterica serovars S. Schwarzengrund ST96, S. Typhimurium ST19, S. Minnesota ST548, S. Infantis ST32, S. Heidelberg ST15, S. Newport ST45, S. Brandenburg ST65 and S. Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S. Typhimurium from food chain), qnrB19, qnrS1, blaCTX-M-8, blaCTX-M-2 and blaCMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S. enterica serovars S. Infantis, S. Schwarzengrund, S. Minnesota, S. Kentucky and S. Brandenburg. In brief, ocurrence and persistence of international lineages of S. enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
UR - http://www.scopus.com/inward/record.url?scp=85069898638&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-45838-0
DO - 10.1038/s41598-019-45838-0
M3 - Article
C2 - 31363103
AN - SCOPUS:85069898638
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 11058
ER -