Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R)

Cassandra Koole, Christopher A. Reynolds, Juan C. Mobarec, Caroline Hick, Patrick M. Sexton, Thomas P. Sakmar

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin- 4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and fulllength receptor state.

Original languageEnglish
Pages (from-to)7131-7144
Number of pages14
JournalJournal of Biological Chemistry
Volume292
Issue number17
DOIs
Publication statusPublished - 28 Apr 2017

Cite this

@article{b5fc7f1ad640489a9bae15d1cb7dbe90,
title = "Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R)",
abstract = "The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin- 4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and fulllength receptor state.",
author = "Cassandra Koole and Reynolds, {Christopher A.} and Mobarec, {Juan C.} and Caroline Hick and Sexton, {Patrick M.} and Sakmar, {Thomas P.}",
year = "2017",
month = "4",
day = "28",
doi = "10.1074/jbc.M117.779496",
language = "English",
volume = "292",
pages = "7131--7144",
journal = "Journal of Biological Chemistry",
issn = "1083-351X",
publisher = "American Society for Biochemistry and Molecular Biology",
number = "17",

}

Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R). / Koole, Cassandra; Reynolds, Christopher A.; Mobarec, Juan C.; Hick, Caroline; Sexton, Patrick M.; Sakmar, Thomas P.

In: Journal of Biological Chemistry, Vol. 292, No. 17, 28.04.2017, p. 7131-7144.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R)

AU - Koole, Cassandra

AU - Reynolds, Christopher A.

AU - Mobarec, Juan C.

AU - Hick, Caroline

AU - Sexton, Patrick M.

AU - Sakmar, Thomas P.

PY - 2017/4/28

Y1 - 2017/4/28

N2 - The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin- 4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and fulllength receptor state.

AB - The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-L-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin- 4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and fulllength receptor state.

UR - http://www.scopus.com/inward/record.url?scp=85018268411&partnerID=8YFLogxK

U2 - 10.1074/jbc.M117.779496

DO - 10.1074/jbc.M117.779496

M3 - Article

VL - 292

SP - 7131

EP - 7144

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 1083-351X

IS - 17

ER -