TY - JOUR
T1 - Genetic associations with clozapine-induced myocarditis in patients with schizophrenia
AU - Lacaze, Paul
AU - Ronaldson, Kathlyn J.
AU - Zhang, Eunice J.
AU - Alfirevic, Ana
AU - Shah, Hardik
AU - Newman, Leah
AU - Strahl, Maya
AU - Smith, Melissa
AU - Bousman, Chad
AU - Francis, Ben
AU - Morris, Andrew P.
AU - Wilson, Trevor
AU - Rossello, Fernando
AU - Powell, David
AU - Vasic, Vivien
AU - Sebra, Robert
AU - McNeil, John J.
AU - Pirmohamed, Munir
PY - 2020/1/27
Y1 - 2020/1/27
N2 - Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P < 1 × 10−6), with odds ratios ranging 5.5–13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10−7; OR = 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11–7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis. Another seven HLA alleles, including HLA-B*07:02 (OR = 0.25, 95% CI: 0.05–1.2) were found to be putatively protective. Long-read DNA sequencing provided increased resolution of HLA typing and validated the HLA associations. The PRS explained 66% of liability (P value = 9.7 × 10−5). Combining clinical and genetic factors together increased the proportion of variability accounted for (r2 0.73, P = 9.8 × 10−9). However, due to the limited sample size, individual genetic associations were not statistically significant after correction for multiple testing. We report novel candidate genetic associations with clozapine-induced myocarditis, which may have potential clinical utility, but larger cohorts are required for replication.
AB - Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P < 1 × 10−6), with odds ratios ranging 5.5–13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10−7; OR = 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11–7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis. Another seven HLA alleles, including HLA-B*07:02 (OR = 0.25, 95% CI: 0.05–1.2) were found to be putatively protective. Long-read DNA sequencing provided increased resolution of HLA typing and validated the HLA associations. The PRS explained 66% of liability (P value = 9.7 × 10−5). Combining clinical and genetic factors together increased the proportion of variability accounted for (r2 0.73, P = 9.8 × 10−9). However, due to the limited sample size, individual genetic associations were not statistically significant after correction for multiple testing. We report novel candidate genetic associations with clozapine-induced myocarditis, which may have potential clinical utility, but larger cohorts are required for replication.
UR - http://www.scopus.com/inward/record.url?scp=85079719589&partnerID=8YFLogxK
U2 - 10.1038/s41398-020-0722-0
DO - 10.1038/s41398-020-0722-0
M3 - Article
C2 - 32066683
AN - SCOPUS:85079719589
SN - 2158-3188
VL - 10
JO - Translational Psychiatry
JF - Translational Psychiatry
IS - 1
M1 - 37
ER -