TY - JOUR
T1 - Generation of human female reproductive tract epithelium from human embryonic stem cells
AU - Ye, Pinglu
AU - Mayberry, Robyn
AU - Lo, Camden
AU - Britt, Kara
AU - Stanley, Edouard
AU - Elefanty, Andrew
AU - Gargett, Caroline
PY - 2011
Y1 - 2011
N2 - BACKGROUND: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Mullerian duct (MD), the primordial female reproductive tract (FRT). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+) mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA). CONCLUSIONS/SIGNIFICANCE: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT.
AB - BACKGROUND: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Mullerian duct (MD), the primordial female reproductive tract (FRT). METHODOLOGY/PRINCIPAL FINDINGS: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+) mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA). CONCLUSIONS/SIGNIFICANCE: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT.
UR - http://www.ncbi.nlm.nih.gov/pubmed/21698266
U2 - 10.1371/journal.pone.0021136
DO - 10.1371/journal.pone.0021136
M3 - Article
VL - 6
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 6
M1 - e21136
ER -