Gas squeezing during the merger of a supermassive black hole binary

Alice Cerioli, Giuseppe Lodato, Daniel J. Price

Research output: Contribution to journalArticleResearchpeer-review

21 Citations (Scopus)


We study accretion rates during the gravitational Wave-Driven merger of a binary supermassive black hole embedded in an accretion disc, formed by gas driven to the centre of the galaxy.We use 3D simulations performed with PHANTOM, a smoothed particle hydrodynamics code. Contrary to previous investigations, we show that there is evidence of a 'squeezing phenomenon', caused by the compression of the inner disc gas when the secondary black hole spirals towards the primary. This causes an increase in the accretion rates that always exceed the Eddington rate.We have studied the main features of the phenomenon for a mass ratio q = 10-3 between the black holes, including the effects of numerical resolution, the secondary accretion radius and the disc thickness. With our disc model with a low aspect ratio, we show that the mass expelled from the orbit of the secondary is negligible (<5 per cent of the initial disc mass), different to the findings of previous 2D simulations with thicker discs. The increase in the accretion rates in the last stages of the merger leads to an increase in luminosity, making it possible to detect an electromagnetic precursor of the gravitational wave signal emitted by the coalescence.

Original languageEnglish
Pages (from-to)939-948
Number of pages10
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Publication statusPublished - 11 Jan 2016


  • Accretion
  • Accretion Discs-Black hole Physics-Gravitational Waves-Hydrodynamics-methods: Numerical

Cite this