Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

L Christodoulou, C Eminian, J Loveday, Peder Norberg, Ivan K Baldry, P D Hurley, Simon P Driver, Steven P Bamford, Andrew Mark Hopkins, J Liske, John A Peacock, Jonathan Bland-Hawthorn, Sarah Brough, Ewan Cameron, Christopher J Conselice, Scott Martin Croom, C S Frenk, Madusha Gunawardhana, David Heath Jones, L KelvinK Kuijken, Robert C Nichol, H Parkinson, Kevin Alan Pimbblet, Cristina Popescu, Matthew Prescott, A S G Robotham, Rob Sharp, W J Sutherland, Edward Taylor, D Thomas, R Tuffs, E van Kampen, Dinuka Wijesinghe

    Research output: Contribution to journalArticleResearchpeer-review

    20 Citations (Scopus)


    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r <19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package annz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber s equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with similar to L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for similar to L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L similar to 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark Peebles. A visual inspection of a random sample from our r <19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.
    Original languageEnglish
    Pages (from-to)1527 - 1548
    Number of pages22
    JournalMonthly Notices of the Royal Astronomical Society
    Issue number2
    Publication statusPublished - 2012

    Cite this