Functional interdependence of BRD4 and DOT1L in MLL leukemia

Omer Gilan, Enid Y N Lam, Isabelle Becher, Dave Lugo, Ester Cannizzaro, Gerard Joberty, Aoife Ward, Meike Wiese, Chun Yew Fong, Sarah Ftouni, Dean Tyler, Kym Stanley, Laura MacPherson, Chen-Fang Weng, Yih-Chih Chan, Margherita Ghisi, David Smil, Christopher Carpenter, Peter Brown, Neil GartonMarnie E Blewitt, Andrew J Bannister, Tony Kouzarides, Brian J P Huntly, Ricky W Johnstone, Gerard Drewes, Sarah-Jane Dawson, Cheryl H Arrowsmith, Paola Grandi, Rab K Prinjha, Mark A Dawson

Research output: Contribution to journalArticleResearchpeer-review

80 Citations (Scopus)

Abstract

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.

Original languageEnglish
Pages (from-to)673-681
Number of pages9
JournalNature Structural & Molecular Biology
Volume23
Issue number7
DOIs
Publication statusPublished - Jul 2016
Externally publishedYes

Cite this