TY - JOUR
T1 - Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy
AU - ElMeshad, Aliaa N
AU - Mortazavi, Seyyed M R
AU - Mozafari, Mhd Reza
PY - 2014
Y1 - 2014
N2 - A scalable and safe method was developed to prepare nanoliposome carriers for the entrapment and delivery of 5-fluorouracil (5-FU). The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3 , v/v). Nanoliposomes were prepared by the heating method in which no harmful chemical or procedure is involved. Results indicated fast and reproducible formation of non-toxic liposomes that possess high entrapment efficiency (up to 96.9 ) and vesicle size range of ca. 530-620 nm. Transmission electron and optical micrographs of the 5-FU liposomes revealed that they were spherical and some were multilayered. There was an increase in the release rate of 5-FU from the liposomes prepared with a high ratio of drug:lipid. The release data showed that the highest release rates were obtained for nanoliposomes containing 5-FU with the drug concentration of 500 mM and that it followed the diffusion model. Nanoliposome preparation method introduced here has the potential of large-scale manufacture of safe and efficient carriers of 5-FU.
AB - A scalable and safe method was developed to prepare nanoliposome carriers for the entrapment and delivery of 5-fluorouracil (5-FU). The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3 , v/v). Nanoliposomes were prepared by the heating method in which no harmful chemical or procedure is involved. Results indicated fast and reproducible formation of non-toxic liposomes that possess high entrapment efficiency (up to 96.9 ) and vesicle size range of ca. 530-620 nm. Transmission electron and optical micrographs of the 5-FU liposomes revealed that they were spherical and some were multilayered. There was an increase in the release rate of 5-FU from the liposomes prepared with a high ratio of drug:lipid. The release data showed that the highest release rates were obtained for nanoliposomes containing 5-FU with the drug concentration of 500 mM and that it followed the diffusion model. Nanoliposome preparation method introduced here has the potential of large-scale manufacture of safe and efficient carriers of 5-FU.
UR - http://informahealthcare.com/doi/pdf/10.3109/08982104.2013.810644
U2 - 10.3109/08982104.2013.810644
DO - 10.3109/08982104.2013.810644
M3 - Article
VL - 24
SP - 1
EP - 9
JO - Journal of Liposome Research
JF - Journal of Liposome Research
SN - 0898-2104
IS - 1
ER -