Formation of cationic peptide radicals by gas-phase redox reactions with trivalent chromium, manganese, iron, and cobalt complexes

Christopher K. Barlow, D. W.David McFadyen, Richard A.J. O'Hair

Research output: Contribution to journalArticleResearchpeer-review

113 Citations (Scopus)


The collision-induced dissociation (CID) of a series of gas-phase complexes [MIII(salen)(P)]+ [where M = Cr, Mn, Fe, and Co; P = hexapeptides YGGFLR, WGGFLR, and GGGFLR; and salen = N,N′- ethylenebis(salicylideneaminato)] has been examined with respect to the ability of the complexes to form the corresponding cationic peptide radical ions, P +•, by homolytic cleavage of the metal peptide bond. This is the first example of the use of gas-phase ternary metal peptide complexes to produce the corresponding cationic peptide radical for a metal other than copper(II). The fragmentation reactions competing with radical formation are highly dependent on the metal ion used. In addition, examination of modified complexes in which the periphery of the salen was substituted allowed evaluation of electronic effects on the CID process, presumably without significant change in the geometry surrounding the metal. This substitution demonstrates that the ligand can be used to tune the dissociation chemistry to favor radical formation and suppress unwanted further fragmentation of the peptide radical that is typically observed immediately following its dissociation from the complex.

Original languageEnglish
Pages (from-to)6109-6115
Number of pages7
JournalJournal of the American Chemical Society
Issue number16
Publication statusPublished - 27 Apr 2005
Externally publishedYes

Cite this